Net benefits of resistance testing directed therapy compared with standard of care in HIV-infected patients with virological failure: A meta-analysis

Javier Ena1, Rosa F. Ruiz de Apodaca1, Concepción Amador1, Concepción Benito1 and Francisco Pasquau1

BACKGROUND. We incorporated the latest available information to evaluate the net benefit of using resistance testing in HIV-infected patients with virological failure.

METHODS. Meta-analyses of randomized controlled trials comparing the clinical impact of selecting antiretroviral therapy according to results of resistance testing (phenotype or genotype) or according to the standard of care. The population studied included HIV-infected patients with virological failure. The outcome measures were the proportion of patients with HIV-RNA below the detection limit, and the decline in HIV-RNA and increase in CD4 lymphocyte count at the end of follow-up (≤ 24 weeks). Clinical trials were identified through searches in MEDLINE, EMBASE and proceedings from major infectious diseases meetings.

RESULTS. Eight trials including a total of 1810 patients were eligible. Therapy guided by resistance testing resulted in a higher percentage of patients with HIV-1 RNA below the detection limit, and the decline in HIV-RNA and increase in CD4 lymphocyte count at the end of follow-up (≤ 24 weeks) as compared with the standard of care (40.2% vs. 32.9%). The pooled risk ratio was 1.23; 95% CI 1.09-1.40; p = 0.0009; test for heterogeneity I² = 0%; p = 0.46). The number needed to treat (NNT) was 13 (95% CI: 9-25). Subgroup analysis showed greater benefits in therapy guided by genotype testing with expert interpretation, when compared with standard of care (NNT: 5; 95% CI: 3-9; p = 0.06). The heterogeneity among trials for evaluating HIV-1 RNA decline and CD4 lymphocyte cell count increase made unfeasible pooling the results across studies.

CONCLUSION. Genotype testing with expert interpretation showed the greatest benefit for guiding therapy in patients with virological and virological failure.

Key words: Drug resistance. Randomized controlled trials. Viral genotype. Viral phenotype. Viral load. Meta-analysis.

Beneficio neto del tratamiento antirretroviral dirigido por tests de resistencia comparado con los cuidados estándar en pacientes con infección por VIH que fracasan al tratamiento antirretroviral

Antecedentes. Hemos incorporado la información más reciente para evaluar el beneficio obtenido tras realizar pruebas de resistencia en pacientes con infección por virus de la inmunodeficiencia humana (VIH) y fracaso virológico.

Métodos. Metaanálisis de ensayos clínicos aleatorizados que comparaban el impacto clínico de los cambios de tratamiento antirretroviral dirigidos según el test de resistencia (fenotipo o genotipo) o según las recomendaciones estándar. La población estudiada fue los pacientes con infección por VIH y fracaso virológico. Las medidas de desenlace analizadas fueron: la proporción de pacientes con ARN-VIH no detectable, descenso de ARN-VIH a incremento de linfocitos CD4 al final del seguimiento. Los ensayos clínicos fueron identificados en búsquedas realizadas en Medline, Embase y libros de congresos.

Resultados. Identificamos 8 ensayos clínicos y un total de 1810 pacientes. El tratamiento guiado por tests de resistencia incrementó la proporción de pacientes con ARN-VIH no detectable (40.2% frente a 32.9%) al final del seguimiento (≤ 24 semanas). El riesgo relativo combinado fue 1,23 (intervalo de confianza del 95% [IC 95%]: 1,09 a 1,41; p = 0,0009); no hubo heterogeneidad entre los estudios (I² = 0%; p = 0,46). El número de pacientes necesario a tratar (NNT) fue de 13 (8 a 27). El análisis de subgrupos identificó un mayor beneficio cuando se utilizaron tests de resistencia genotípicos interpretados por expertos (NNT: 5; IC 95%: 3 a 9; p = 0,06). Hubo heterogeneidad significativa entre los estudios al evaluar la reducción de ARN-VIH y al incremento de linfocitos CD4, ello impidió combinar los resultados.

Conclusión. En pacientes con infección por VIH y fracaso virológico el mayor beneficio correspondió al tratamiento guiado por los tests genotípicos de resistencia interpretados por expertos.

Introduction

Testing for HIV resistance to antiretroviral drugs has been recommended to help guide new regimens after failure of treatment\(^1\). HIV resistance testing involves genotypic assays, phenotypic assays or both\(^2\). Genotypic assays detect drug resistance mutations in the relevant viral genes (i.e. reverse transcriptase and protease) that are known to confer drug resistance. Interpretation of test results requires knowledge of the mutations or consultation with a specialist in HIV drug resistance in order to select active drugs. Phenotyping assays measure virus’s ability to grow in different concentrations of antiretroviral drugs. Drug concentrations that inhibit 50% and 90% of viral replication (i.e. the median inhibitory concentration [IC\(_{50}\) and IC\(_{90}\)) are calculated, and the ratio of the IC\(_{50}\) of test and reference viruses is reported as the fold increase in the IC\(_{50}\) (i.e. fold increase). Interpretation of phenotyping test is complicated by the paucity of data regarding the specific resistance level that is associated with drug failure. Again, consultation with a specialist can be useful for interpreting test results.

Resistance testing, both genotyping and phenotyping, has some drawbacks that include the lack of uniform quality assurance for all available assays, relatively high cost and insensitivity for minor viral species\(^3\). Moreover, randomized clinical trials have shown conflicting results when the efficacy of antiretroviral regimens guided by resistance testing was compared with standard of care. A previous meta-analysis has compared the efficacy of resistance testing with the standard of care to achieve a HIV-1 RNA below the detection limit\(^4\). In the present meta-analysis, we updated the information available, and in addition we assessed the magnitude of HIV-1 RNA decrease and the CD4 lymphocyte recovery in the intervention and control groups.

Methods

Eligibility criteria

Studies of HIV infected patients with viral load > 400 copies/mL after at least 12 weeks of any HAART therapy who were randomized to different antiretroviral therapy according to the results of resistance testing (genotype, phenotype) or therapy changes according to the standard of care. Outcomes evaluated were the proportion of patients with HIV-1 RNA below the detection limit, changes in HIV-1 RNA and, changes in CD4 cells at the end of follow-up.

Search strategy

We searched (1996-October 2004) MEDLINE and EMBASE using the search strategy: (Resistance testing OR Susceptibility testing OR Drug Resistance OR Genotypic Resistance OR Phenotypic Resistance OR Phenotype or Genotype) AND Randomized controlled trial AND HIV. We also searched AIDSLINE and Cochrane Library databases. Abstracts presented at major infectious diseases meetings between 1996 and 2004 were hand searched.

Selection

Each of us independently reviewed each title or abstract, to identify relevant articles. We further independently assessed relevant citations for inclusion using the full publication, or abstract, if they were never published in full. We measured our agreement on selecting articles for further evaluation and for finally including studies. Disagreement was resolved by consensus. Duplicate or updated publications were identified. We included only the most complete data set in our review. The methodological quality of the included trials was rated according to the validated Jadad 5 point scale\(^5\). The scale consisted of three items describing randomization (0-2 points), masking (0-2 points), and description of dropouts and withdrawals (0-1 points) in the report of randomized-controlled trials. Higher scores indicate better reporting.

Data extracted

Two of us (J.E. and R.F.R.A.) independently selected studies and collected data regarding study quality, baseline HIV-1 RNA, lower limit of detection of HIV-1 RNA, baseline CD4 lymphocyte count, type of resistance testing used, genotype interpretation by experts, time to outcome evaluation, proportion of patients with HIV-1 RNA below the limit of detection, at the end of follow-up and difference in CD4 lymphocyte and HIV-1 RNA between baseline and end of follow-up. Disagreement was resolved by consensus.

Statistical analysis

We calculated the relative risk of achieving a non detectable viral load and its 95% confidence interval for each study using as the numerator the number of patients with no detectable viral load and as denominator the number of patients entered in the study (intention-to-treat principle). For every trial we calculated the relative risk for the primary outcome. We used \(\chi^2\) and chi square test to assess if significant heterogeneity was present between the included trials. This statistic tests the null hypothesis that the underlying effect measured by the pooled studies is equivalent. If no significant heterogeneity was present \((p < 0.1)\) we used the fixed effect model to combine the effect sizes of the included studies. In case of finding heterogeneity a random effects model was used to combine the effect sizes\(^6\). We carried out a sensitivity analysis according to the following “a priori” hypotheses: 1) Type of resistance test (genotype vs. phenotype), 2) Genotype test (interpreted by experts vs. not interpreted), 3) Follow-up period (< 24 weeks vs. > 24 weeks), 4) Proportion of patients with only a first failure to antiretroviral regimes \((\geq 45\%, < 45\%\), or Unknown), and 5) Studies quality assessment according the Jadad scale (< 3 points vs. \(\geq 3\) points). To compare the effects of resistance testing in the aforementioned subgroups we used the approach described by Altman and Bland\(^7\). Funnel plot review provided a strategy to assess publication bias.

For outcomes that included continuous variables such as HIV-1 RNA reduction and increase in CD4 lymphocyte cell count we used the summary statistic the weighted mean difference. The effect size for each individual study was defined as the difference between the resistance testing group and the standard of care group divided by the pooled standard deviation. Effect sizes were combined to compute a weighted mean effect size.

Results

Trial flow

Figure 1 describes the flowchart diagram. We identified 6 full-length reports in peer-reviewed journals, and two abstracts from conferences proceeding meetings with usable information for the meta-analysis\(^8\).\(^9\).\(^10\).

Study characteristics

Study characteristics are summarized in table 1. Among the studies, 5 used genotype testing, 2 phenotype testing and 1 both types of resistance testing. The description of standard of care varied among the trials: two studies did not define this term\(^10\).\(^11\), three described that standard of care treatment was chosen by clinicians or investiga-
The length of follow up was equal or less than 24 weeks in all studies. The quality of methods of 3 trials was rated high (\(H_1\) points), in the remaining 5 studies allocation was not conceal or was unknown. The funnel plot showed no significant publication bias.

Outcomes

The primary outcome of all studies was the proportion of patients with HIV-1 RNA below the detection limit at the end of follow up. Five trials described the reduction observed in HIV-1 RNA (mean and standard deviation, log_{10} copies/mL) and three the changes in CD4 lymphocyte count (mean and standard deviation, cells/\times10^9/L) observed at the end of follow-up (table 2).

Undetectable virus load

A total of 413 (40.21%) patients in whom therapy was guided by resistance testing achieved an undetectable viral load at end of follow up compared with 258 (32.95%) patients treated according the standard of care (Relative Risk 1.23; 95% CI: 1.09-1.40, \(p=0.0009\)) (fig. 2). Although there were differences among trials in type of resistance test used, rate of virological failure at entry and lower

Table 1: Characteristics of Clinical Trials selected

<table>
<thead>
<tr>
<th>Study [Ref]</th>
<th>Jadad Score</th>
<th>Number of patients</th>
<th>Baseline CD4 cells (\times10^9/L)</th>
<th>Baseline HIV-1 RNA log_{10} copies/mL</th>
<th>Previous exposure to antiretroviral therapy</th>
<th>Only one ART failure (%)</th>
<th>Intervention</th>
<th>Follow-up (%)</th>
<th>Primary end-point</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIRADAPT**</td>
<td>4</td>
<td>108</td>
<td>214</td>
<td>4.7</td>
<td>39 mos. with NRTI. 12 mos. with PI. NRTI 10%</td>
<td>40 Genotype test vs. standard of care</td>
<td>92 HIV-1 RNA (<200) copies/mL at 24 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GART**</td>
<td>3</td>
<td>153</td>
<td>230</td>
<td>4.42</td>
<td>13 mos. with antiretroviral therapy NNRTI 10%</td>
<td>48 Genotype test + expert advice vs. standard of care</td>
<td>97 HIV-1 RNA (<500) copies/mL at 12 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NARVAL**</td>
<td>3</td>
<td>541</td>
<td>280</td>
<td>(>3.0)</td>
<td>56 mos. with antiretroviral therapy (\geq 4) NRTI, (\geq 2) PI, (\geq 1) NNRTI 20%</td>
<td>30 Genotype test vs. phenotype test vs. standard of care</td>
<td>78 HIV-1 RNA (<200) copies/mL at 12 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAVANA**</td>
<td>1</td>
<td>328</td>
<td>387</td>
<td>4.0</td>
<td>(\geq 2) PI 57% NRTI 41%</td>
<td>35 Genotype test vs. standard of care Expert advice vs. no expert advice</td>
<td>97 HIV-1 RNA (<400) copies/mL at 24 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARGENTA**</td>
<td>3</td>
<td>174</td>
<td>265</td>
<td>(>3.30)</td>
<td>24 mos. therapy with NRTI NNRTI 25% Failure to 2 PI 15%</td>
<td>47 Genotype test + expert advice vs. standard of care Expert advice vs. no expert advice</td>
<td>91 HIV-1 RNA (<500) copies/mL at 24 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCTG017**</td>
<td>1</td>
<td>238</td>
<td>NA</td>
<td>4.10</td>
<td>36 mos. with NRTI NNRTI 25% Failure to 2 PI 15%</td>
<td>70 Phenotype test vs. standard of care</td>
<td>83 HIV-1 RNA (<400) copies/mL at 24 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIRAS001**</td>
<td>1</td>
<td>226</td>
<td>327</td>
<td>3.92-4.18</td>
<td>Exposure to NNRTI 6%</td>
<td>100 Phenotype test vs. standard of care</td>
<td>93 HIV-1 RNA (<400) copies/mL at 16 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubini**</td>
<td>1</td>
<td>44</td>
<td>NA</td>
<td>NA</td>
<td>Exposed to 2-6 antiretroviral regimens, 40% failure to PI</td>
<td>NA Genotype test vs. standard of care</td>
<td>100 HIV-1 below limit of detection at 24 weeks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NA: not available; NRTI: nucleoside reverse transcriptase inhibitor; NNRTI: non-nucleoside reverse transcriptase inhibitor; PI: protease inhibitor.

Table 1. Characteristics of Clinical Trials selected.
limit of HIV-1 RNA detection, we did not detect significant heterogeneity among trials (p = 0.46; I² = 0%). The Absolute Risk Reduction was 8.1% (95% CI; 3%-12%), and accordingly the Number Needed to Treat was 13 (95% CI: 9-25).

Among our "a priori" hypotheses tested in the subgroup analysis, we found that patients having genotype testing interpreted by experts received the greatest benefit (table 3). The proportion of patients achieving a not detectable viral load at the end of follow-up in patients with therapy guided by genotype resistance testing interpreted by experts compared with the standard of care was 51.6% vs. 29.6, respectively (p = 0.06). Accordingly, the number of patients needed to treat was 5 (95%CI: 3-9).

Studies with intrinsically smallest bias (rated as "high quality") showed the strongest association between resistance testing guided antiretroviral therapy and achieving a not detectable viral load at the end of follow up (table 3). Subgroup analysis did not show differences between genotype and phenotype resistance testing, neither in virological response according length of follow-up, nor in virological response regarding the number of previous antiretroviral failing regimens. Decrease in HIV-1 RNA

Five of the eight identified trials, with a total of 1,272 patients, contributed data to this outcome. Pooling the results there was a significant (p < 0.000001), although clinically modest difference in favor of resistance testing directed therapy compared with the standard of care (weighted mean difference in HIV-1 RNA reduction: 0.36 log_{10} copies/mL, 95% CI: from 0.25 to 0.46). Nevertheless, there was a significant heterogeneity among trials (I² = 79.7%, p = 0.0006). The observed decrease in HIV-1 RNA (weighted mean difference) varied from 0.57 to 1.5 log_{10} copies/mL in the resistance testing group, and

Table 2. Outcomes

<table>
<thead>
<tr>
<th>Genotype or phenotype resistance testing directed therapy</th>
<th>Standard of care directed therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1 RNA below detection limit</td>
<td>HIV-1 RNA below detection limit</td>
</tr>
<tr>
<td>(log_{10} copies/mL) Mean (SD)</td>
<td>(log_{10} copies/mL) Mean (SD)</td>
</tr>
<tr>
<td>CD4 lymphocyte increase (cells × 10^9/mL) Mean (SD)</td>
<td>CD4 lymphocyte increase (cells × 10^9/mL) Mean (SD)</td>
</tr>
<tr>
<td>Trial</td>
<td></td>
</tr>
<tr>
<td>VIRADAPT²⁰</td>
<td>21/65 (32%) 1.15 (0.15) 21 (18) 6/43 (14%) 0.67 (0.19) 33 (21)</td>
</tr>
<tr>
<td>GART²¹</td>
<td>26/78 (33%) 0.94 (0.11) 25 (NA) 6/75 (21%) 0.47 (0.09) 18 (NA)</td>
</tr>
<tr>
<td>NARVAL²²</td>
<td>147/382 (38%) 0.94 (1.05) 27 (102) 55/159 (36%) 0.76 (1.01) 27 (63)</td>
</tr>
<tr>
<td>HAVANA²³</td>
<td>78/161 (48%) 0.84 (0.8) NA 60/165 (36%) 0.63 (0.8) NA</td>
</tr>
<tr>
<td>ARGENTA²⁴</td>
<td>18/35 (51%) 0.57 (1.09) 15 (12.2) 15/89 (17%) 0.39 (1.04) 22 (13.3)</td>
</tr>
<tr>
<td>CCGT575⁵⁶</td>
<td>57/119 (48%) 0.71 (NA) NA 57/119 (48%) 0.69 (NA) NA</td>
</tr>
<tr>
<td>VIRAA001⁵⁷</td>
<td>52/114 (46%) 1.23 (NA) 27 (NA) 38/112 (34%) 0.67 (NA) 40 (NA)</td>
</tr>
<tr>
<td>Robin⁴⁹</td>
<td>14/23 (61%) 1.5 (NA) NA 13/21 (52%) 2.0 (NA) NA</td>
</tr>
</tbody>
</table>

NA: not available; SD: standard deviation.

Figure 2. Relative risk of achieving a not detectable viral load for all eight trials.
from 0.39 to 2.0 log_{10} copies/mL in the standard of care group.

Patients treated according to genotype tests interpreted by experts had a reduction in HIV-1 RNA (weighted mean difference 0.37 log_{10} copies/mL, 95% CI: from 0.12 to 0.62) greater than those in treated by the standard of care (weighted mean difference 0.24 log_{10} copies/mL, 95% CI: from –0.01 to 0.48).

CD4 lymphocyte recovery

Three trials, with a total of 823 patients, contributed to this outcome.\(^{10,11,14}\) Pooling the results there was a significant (\(p < 0.001\)) but clinically modest smaller CD4 recovery in the group of patients with therapy directed by resistance testing compared with those who received therapy according the standard of care (weighted mean difference –7.63 × 10^3 cells/L, 95% CI: from –11.03 to –4.22).

The observed differences in lymphocyte CD4 counts between the resistance testing and the standard of care groups varied from –12.00 × 10^3 cells/L (95% CI: from –19.97 to –4.03) to 0.00 × 10^3 cells/L (95% CI: from –16.77 to 16.77).

Discussion

Our intention was to examine clinical outcomes in terms of proportion of patients achieving a not detectable HIV-1 RNA, quantitative reduction in HIV-1 viral load, and increase in CD4 lymphocytes, after comparing treatment guided by resistance testing or by standard of care in patients failing antiretroviral therapy. Resistance testing confers a statistically significant benefit for achieving a not detectable viral load compared with the standard of care.

However, in our study we observed a nearly significant increase in CD4 lymphocyte count between groups. These results have been reproduced in a recently published meta-analysis in every outcome analyzed.\(^{15}\) However, in our study we observed a nearly significant benefit of therapy guided by resistance testing with expert interpretation when compared with standard of care.

Resistance testing has been recommended by several agencies for patients switching therapy due to treatment failures in order to maximize the number of active drugs in the new regimen. Several retrospective studies showed the predictive value of genotypic and phenotypic testing. However, in occasions clinical history alone has been sufficient to predict the failure of subsequent therapy, for example, with abacavir in heavily nucleoside-experienced patients or with nelfinavir in patients with prolonged protease inhibitor experience.\(^{20}\) Zolopa and colleagues\(^{19}\) found that clinical history alone predicted 40 percent of the treatment response in univariate analysis, genotype alone predicted 67 percent of the treatment response, and adding the clinical history into the model in a multivariate analysis the value was raised to 71 percent. It has been shown that efficacy of a new antiretroviral regimen in patients with previous virological failure is related with the number of available drugs that still maintain activity, more complex regimens with inconvenient dosing schedules, greater toxicity, and higher costs.\(^{17}\) In fact, many patients with low grade virological failure (less than 10,000 copies RNA VIH-1/mL), and resistance to the three
major drug classes-nucleoside-reverse transcriptase in-
hibitors (NRTI), protease inhibitors (PI), and non-nucleo-
side reverse transcriptase inhibitors (NNRTI) - maintain
stable or rising CD4-cell counts and remain clinically well.
An observational study showed that a complete suppres-
sion of HIV viremia is not absolutely necessary for achiev-
ing immunologic and clinical stability in patients with
multiple antiretroviral regimens’ failures.

Limitations
Reasons for virological failure are multi-factorial, and
emergence of viral resistance is just one of them. Poor pen-
etration of drugs into certain body compartments, insuffi-
cient adherence, and variable pharmacokinetics within
and between individuals can contribute to virological fail-
ure. Moreover, the most common shortcomings of geno-
typic and phenotypic resistance test include unreliable
standardization, variable reproducibility of testing metho-
dology, disorganized or confusing reporting formats for
test results, and lack of physician expertise in interpre-
tation.

The major limitation of this meta-analysis was the paucity of randomized clinical trial data, and the short fol-
low up period. The sparseness of the data, and the hetero-
genocity among trials prevented the assignment of defini-
tive conclusions in terms of potency of antiretroviral
therapy guided by resistance testing to reduce HIV-1 viral
load and to increase CD4 lymphocyte counts. To avoid se-
lection bias, a systematic and comprehensive search was
conducted and two reviewers independently evaluated tri-
als for inclusion. There is a possibility of publication and
selection bias in any meta-analysis, however, significant publication bias was excluded according the funnel plot.

Conclusion
Resistance testing is a useful tool to gather knowledge about “in vitro” resistance mechanisms to antiretroviral
drugs, and to delineate algorithms to manage patients with virological failure. Our study showed that patients
with virological failure received greatest benefit from genotype resistance testing with expert advice when com-
pared with the standard of care. However, it should be
taken into account that HIV-1 virological failure is a com-
plex problem in which viral suppression and immunologic
benefit are related not only to viral resistance, but also to
adhherence, drug concentration and the number of active
available antiretroviral drugs required to build up a sal-
vage regimen.

References
1. Hirsch MS, Brun-Vezinet F, Clotet B, Cueret E, Karassik DS, D’Aquila
RT, et al. Antiretroviral drug resistance testing in adults infected with Hu-
man Immunodeficiency Virus Type 1: 2003 recommendations of an Interna-
2. US Department of Health and Human Services, Henry J. Kaiser Family
Foundation. Guidelines for the use of antiretroviral agents in HIV infected
adults and adolescents. Available at: http://www.aidsinfo.nih.gov/Guideli-
nes/FactSheets/3407/3407.pdf.
3. The EuroGuidelines Group for HIV resistance. Clinical and laboratory gui-
delines for the use of HIV-1 resistance testing as part of treatment manage-
4. Voss B, D’Aquila RT. Antiretroviral testing for clinical ma-
angement. AIDS Rev. 2002;4:3-12.
5. Hamilton MJ. Alternatives to genotypic and phenotypic drug re-

6. Torra D, Yunus B. Antiretroviral drug resistance testing in patients with
7. Jafar AR, Moore KA, Carroll B, Johnkinson C, Reynolds DJ, Gorolin DA,
et al. Assessing the quality of reports of randomized clinical trials in blin-
9. Altman DG, Bland JM. Interaction revisited: the difference between two es-
timates. BMJ. 2003;326:239.
et al. Drug resistance genotyping in HIV-1 therapy: the VIRAMAY randomi-
11. Baxter JD, Mayosi BL, Winkworth EN, Seaton JD, Hoover ML, Winters
MA, et al. A randomized study of antiretroviral management based on plas-
mas genotypic antiretroviral resistance testing in patients failing therapy.
CPIBA 046 Study Team for the Terry Beirn Community Programs for Clini-
et al. Phenotypic or genotype resistance testing for choosing antiretroviral
et al. Clinical utility of HIV-1 genotyping and expert advice: the Havana trial.
et al. Usefulness of monitoring HIV drug resistance and adherence in individu-
al failing highly active antiretroviral therapy: a randomized study (ARGEN-
HIV-1 genotypic resistance patterns predicts response to saquinavir-ritona-

derapy in patients infected with drug-resistant HIV-1 in Europe.
cranial zidovudine use on the resistance pathway selected by abacavir-
17. Rubini NPM, Brindeiro PA, Brindeiro RM, Llerena CA, Hertogs K, Tanuri
therapy. A randomized trial assessing the impact of phenotypic resistance
testing on adherence, drug concentration and the number of active
available antiretroviral drugs required to build up a sal-