Characterization of the enzyme aac(3)-id in a clinical isolate of Salmonella enterica serovar Haifa causing traveler’s diarrhea

Roberto Cabrera a, Joaquim Ruiz b, Javier Sánchez-Céspedes a, Pilar Goñi c, Rafael Gómez-Lus c, M. Teresa Jiménez de Anta a, Joaquim Gascón b and Jordi Vila a, *

a Servicio de Microbiología, IDIBAPS, Hospital Clinic, Barcelona, Spain
b Centro de Salud Internacional, IDIBAPS, Universidad de Barcelona, Hospital Clinic, Barcelona, Spain
c Servicio de Microbiología, IDIBAPS, Hospital Clinic, Barcelona, Spain

INFORMACIÓN DEL ARTÍCULO

Recibido el 24 de abril de 2008
Aceptado el 11 de noviembre de 2008
On-line el 29 de abril de 2009

Palabras clave:
Aminoglicosido acetiltransferasa
Integron
Salmonella
Diarrea del viajero

ABSTRACT

Introduction: The objective of this investigation was to identify the mechanism of decreased susceptibility to gentamicin in a Salmonella clinical isolate, leading to the detection of an aminoglycoside acetyltransferase gene found in a class 1 integron.

Methods: A multidrug-resistant Salmonella strain was recovered from feces of a traveler to Egypt. The antimicrobial susceptibility test to 12 antimicrobial agents was performed with the Kirby-Bauer method. The presence of class 1 integron was determined by PCR. The amplified product was recovered and sequenced in order to establish the genes carried. In addition, susceptibility to gentamicin C1a, gentamicin C1, sisomicin, neomycin, dibekacin, kanamycin, tobramycin, amikacin, netilmicin, apramycin, dactimycin, spectinomycin, streptomycin, lividomycin and butirosin, was established. The Champion™ PET101 Directional TOPO® Expression Kit was used to clone and express the aac(3)-I gene.

Results: The isolate was identified as Salmonella enterica serovar Haifa, showing resistance to nalidixic acid, tetracycline and decreased susceptibility to gentamicin. One integron with a size circa 1,500 bp, encoding an aac(3)-IId plus aadA7 genes was observed. The analysis of the susceptibility to different aminoglycosides showed resistance to gentamicin in the C1a, gentamicin C1, and dactimycin, in accordance with the presence of this enzyme but, was susceptible to sisomicin. The homology of the amino acid and nucleotide sequences with the AAC(3)-IId enzyme was 100%.

Conclusion: The presence of the AAC(3)-IId enzyme was described for the first time in a Salmonella multiresistant strain.

© 2008 Elsevier España, S.L. All rights reserved.

Caracterización del enzima AAC(3)-Id en un aislamiento clínico de Salmonella Haifa causante de diarrea del viajero

RESUMEN

Introducción: el objetivo de este estudio fue identificar el mecanismo de sensibilidad disminuida a gentamicina en un aislamiento clínico de Salmonella, lo que nos condujo a la detección de un gen que codifica una acetiltransferasa modificante de aminoglicosidos localizada en un integron tipo 1.

Métodos: la cepa multiresistente de Salmonella fue aislada de las heces de un viajero a Egipto. La susceptibilidad a 12 agentes antimicrobianos se determinó mediante Kirby-Bauer. La presencia de integron clase 1 se realizó mediante PCR. El producto de PCR amplificado del integron fue recuperado y secuenciado para conocer los genes que contenía dicho integron. Además se determinó la susceptibilidad a gentamicina C1a, gentamicina C1, sisomicina, neomicina, dibekacina, kanamicina, tobramicina, amikacina, netilmicina, apramicina, dactimicina, espectinomicina, estreptomicina, lividomicina y butirosina. El kit de expresión Champion™ PET101 Directional TOPO® fue utilizado para clonar y expresar el gen aac(3)-I.

Resultados: el aislamiento fue identificado como Salmonella enterica serovariedad Haifa, el cual presentaba resistencia al ácido nalidixico, tetraciclina y sensibilidad disminuida a gentamicina. Se observó la presencia de un integron tipo 1 con un tamaño de 1,500 bp en el que se encontraron dos genes (aac(3)-IId y aadA7). El análisis de la sensibilidad a diferentes aminoglicosidos de la cepa de E. coli TOP10® transformada con el vector que contenía el gen aac(3)-IId demostró resistencia a gentamicina C1a, gentamicina C1, y dactimicina.

* Autor para correspondencia.
Correo electrónico: jvila@ub.edu (J. Vila).

0213-005X/2008 Elsevier España, S.L. Todos los derechos reservados. doi:10.1016/j.eimc.2008.11.016
Introduction

Traveler’s diarrhea (TD) is a frequent health problem among travelers to developing countries. This illness may be due to a large variety of microorganisms, among these, Salmonella is one of the most frequent following diarrheogenic Escherichia coli and Shigella spp. 2,21. Diarrhea associated with Salmonella spp. is usually self-limited and does not require antibiotic therapy. However, in specific cases, due to both the severity or the duration of the symptoms, antibiotic treatment is required. Unfortunately, antimicrobial resistance levels among diarrheagenic pathogens have increased in recent years, and Salmonella spp. is not an exception. 22,23.

Acquisition of resistance may be related to two different mechanisms: 1. Transferable, such as plasmids or transposons, and 2. Non transferable, usually associated with chromosomal mechanisms: 1. Transferable, such as plasmids or transposons, usually carry gene-cassettes encoding for antibiotic resistance genes, which can potentate the dissemination of antibiotic resistance genes through these genetic elements. 15.

To date, nine classes of integrons have been described. 16. Of these, the most relevant at a clinical level are those belonging to classes 1 and 2. The integrons of these two aforementioned classes usually carry gene-cassettes encoding for antibiotic resistance mechanisms. Among these gene-cassettes, the aminoglycoside-modifying encoding genes are considered the most prevalent. 6.

The aim of this work was to investigate the mechanism of decreased susceptibility to gentamicin in a clinical isolate of Salmonella enterica serotype Haifa.

Methods

Bacterial isolate

A Salmonella isolate recovered from feces of a traveler with diarrhea was identified by different typing methods, including biochemical tests and serotyping using somatic and flagella antiserum. 11.

Antimicrobial susceptibility

A preliminary antimicrobial susceptibility test was performed, using an agar diffusion method with commercially available disks (Becton Dickinson) to the following antibiotics: ampicillin, amoxicillin plus clavulanic acid, nalidixic acid, tetracycline, trimethoprim/sulphametoxazole, chloramphenicol, gentamicin, amikacin, imipenem, norfloxacin, ciprofloxacin and ceftazidime. Interpretation of results was performed according to the Clinical Laboratory Standards Institute (CLSI) guidelines. E. coli ATCC 25922, E. coli ATCC 35218 and Pseudomonas aeruginosa ATCC 27853 were used as controls. 4.

To assess an activity pattern, susceptibility to gentamicin C1a, gentamicin C2, sisomicin, neomycin, dibekacin, kanamycin, tobramycin, amikacin, netilmicin, apramycin, dactimicin, spectinomycin, streptomycin, lividomycin and butirosin, the disk diffusion method on Mueller-Hinton agar was used. These disks were manually prepared adding 30 μg of each antibiotic to 10 mm sterile blank filter disks. E. coli ATCC 25922 was used as a susceptible control strain. Reductions of the inhibition zone were considered as the result of aminoglycoside-modifying enzyme (AME) activity. Antimicrobial susceptibility levels of gentamicin were also established by the E-Test method following the manufacturer’s instructions.

Detection of class 1 integrons

The presence of class 1 integrons was determined by PCR using the primers and conditions previously described. 12. The amplified products were gel recovered using the Wizard SV Gel and PCR Clean-up System Kit (Promega, Madison, USA) and sequenced using the BigDye Terminator v3.1 Cycle Sequencing Kit (Perkin Elmer, Emeryville, USA).

Plasmid analysis

Plasmid DNA was isolated as described by Kado and Liu. 8. The plasmid extracted DNA was resolved by electrophoresis on 0.8% agarose gel and stained with ethidium bromide (0.5 mg/L).

Conjugation

Bacterial conjugation experiments were performed using E. coli J53 (F-, pro, Gm R, Rif R, Lac +) as the receptor strain as previously described, 12, and were repeated three times.

DNA amplification and cloning of the aac(3)-I gene

The Champion™ pET101 Directional TOPO® Expression Kit (Invitrogen, USA) was used to clone and express the aac(3)-I gene, following the manufacturer guidelines. Briefly, the entire AAC(3)I encoding gene was amplified using the forward primer AAC3IF: 5’-CAC CGT GTC AGT CGA AAT CAT C-3’ and the reverse primer AAC3IR: 5’-GGC ATG ATT TTT ACT CTG C-3’. The amplified product was resolved by electrophoresis on a 2% agarose gel stained with ethidium bromide.

The PCR product was gel recovered, using a Wizard SV Gel and PCR Clean-Up System (Promega, Madison, Wi) and was directly cloned into the pET vector and transformed into E. coli TOP10F®. Transformed E. coli strain were spread on a selective plate with ampicillin and incubated overnight at 37 °C. Plasmids were isolated from several colonies and then analyzed by PCR using the AAC3IF primer and the specific vector primer T7 Reverse. The isolated plasmid was used to transform E. coli BL21 Star (DE3) for expression studies. The cloned insert was expressed in plates containing IPTG (1 mM).

Results and discussion

A Salmonella enterica serovar Haifa was isolated from feces of a traveler with diarrhea returning from Egypt. This strain showed resistance to nalidixic acid, tetracycline and decreased susceptibility to gentamicin, while remaining susceptible to ampicillin, amoxicillin plus clavulanic acid, ceftazidime, cotrimoxazole,
chloramphenicol, amikacin, imipenem, norfloxacin, and ciprofloxacin.

The isolate was investigated for the presence of class 1 integrons. One amplicon of circa 1500 bp was detected. The sequence of this amplicon revealed the association of the integron with aac(3)-Id plus ant(3') (also named aadA7) aminoglycoside-resistance genes (Figure 1). The detected aac(3)-Id nucleotide sequence showed amino acid and nucleotide homologies of 100% both with the aac(3)-Id and aac(3)-le genes located in similar integrons in Salmonella enterica serovars Newport and Kentucky19,20, as well as in Vibrio fluvialis1 (GeneBank access: AY458224, AY463797 and AB114632). Meanwhile, the homology with aac(3)-Ia, aac(3)-Ib and aac(3)-lc was lower. The ant(3') did not show differences with other nucleotide sequences previously reported.

The Salmonella enterica serovar Haifa isolate showed a resistance pattern partially consistent with the presence of an AACS-Id plus an ANT(3') aminoglycoside nucleotidyltransferase, with resistance or decreased susceptibility to gentamicin C1a, gentamicin C1, dactimicin, streptomycin and spectinomycin, but susceptible to sisomicin an aminoglycoside also considered a Susceptible to sisomicin. When the MIC of gentamicin A Diameter of the inhibition zone in mm.

Table 1

<table>
<thead>
<tr>
<th>Strain</th>
<th>Gm ClA</th>
<th>Gm ClC</th>
<th>Sisomicin</th>
<th>Dactimicin</th>
<th>Streptomycin</th>
<th>Spectinomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli ATCC</td>
<td>274</td>
<td>26</td>
<td>25</td>
<td>18</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>BL21</td>
<td>28</td>
<td>29</td>
<td>32</td>
<td>19</td>
<td>23</td>
<td>16</td>
</tr>
<tr>
<td>S. Haifa</td>
<td>13</td>
<td>15</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AACS-Id*</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>20</td>
<td>17</td>
</tr>
</tbody>
</table>

*a Diameter of the inhibition zone in mm.

BL21 E. coli strain transformed with the vector carrying the aac(3)-Id gene.

Experiments were performed, showing negative results. However, the PCR of the aac(3)-Id using chromosomal DNA extracted from an agarose gel as a DNA template was positive. The amplification of the gyrA gene was used as a control (data not shown). Therefore, our results suggest the chromosomal localization of the integron.

The phenotypic characteristics of the strains analyzed (decreased susceptibility to gentamicin and susceptibility to sisomicin) suggested the presence of a new aminoglycoside acetyltransferase gene. Nevertheless, the genetic study show the presence of AAC(3)-Id enzyme, before described in Salmonella enterica serovar Newport. The phenotype (decreased susceptibility to gentamicin and susceptibility to sisomicin) shown by the strain may be explained by a posttranslational change in the conformation of the enzyme. However, structural studies would be needed to show this hypothesis.

A Salmonella enterica serovar Haifa carrying a aac(3)-Id gene was identified in a class 1 integron for the first time. This result shows the potential of integrons to carry and spread resistance genes.

Acknowledgments

This study was funded by Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III – FEDER, Spanish Network for the Research in Infectious Diseases (REIPI RD06/0008), FIS 04/0068, and grant 2005 SGR 0444 from the Departament d’Universitats, Recerca i Societat de la informació de la Generalitat de Catalunya, Spain to J.V. and by the DGA/Group of Ecology of Bacterial resistance, Spain. R.C. has a fellowship from Fundación Carolina and BBVA, Spain. J.R. research is supported by project CP05/0130.

References


