1. Introduction

Several studies have revealed [1-8] the potential use of YAG oxides as reinforcing element in an Al$_2$O$_3$ ceramic matrix. Both YAG and Al$_2$O$_3$ have similar thermal expansion coefficient and they are chemically stable due to their low O$_2$ vapor pressure. In addition, there is a eutectic reaction at 1826 °C in the Al$_2$O$_3$-Y$_2$O$_3$ system. It enables a fusion processing, evolving a liquid phase, turning the Al$_2$O$_3$-YAG composites very attractive. This eutectic reaction is possible for compositions containing from 18.5 to 20.5 mol% Y$_2$O$_3$ [2,9,10].

Although its advantages, the Al$_2$O$_3$-YAG eutectic composite fabrication process is extremely complex and its development is restricted to the well-defined eutectic composition. These reasons have led to the investigation of the polycrystalline dual phase Al$_2$O$_3$-YAG composite [11,12]. In this study, Al$_2$O$_3$ and Y$_2$O$_3$ precursors powders have been processed by milling aiming the Al$_2$O$_3$-YAG powders composites production. The milling time optimization was determined based on the particle size distribution evaluation and BET. The heat treatment temperature for full YAG formation was carried on by XRD (X-ray Diffraction) combined with Rietveld Method [13] for quantitative phase determination.
2. Methods

Commercially available powders of Y$_2$O$_3$ (Alfa Aesar, REO, 99.5%) and Al$_2$O$_3$ (Alcoa, APC 2011, 99.7%) with the eutectic Al$_2$O$_3$-YAG molar ratio of 20.5:79.5 (or 36.35:63.65 wt%) [2,9,10] were milled in a planetary mill for 2 hours. The slurry was then dried in a furnace at 120 °C for 48 hours. The soft agglomerated powder was then crushed and sieved. Green bodies were uniaxially pressed at 30 MPa. The green pellets were heat treated in air at 1,000 °C, 1,200 °C, 1,400 °C and 1,600 °C during 3 hours. Pellets surface fracture were gold-coated prior to observation in a JEOL JSM-6460LV scanning electron microscope (SEM) using secondary electrons imaging. The pellets were again crushed in a mortar and pestle and the produced powder was milled like before. The powder was observed in a JEOL EM-2010 transmission electron microscope (TEM) with an EDS (Energy Dispersive X-Ray Spectroscopy) Noran System SIX, Model 200. A Cu grid was used for the powders support.

Phase formation characterization was performed using XRD techniques, carried out on these samples using a Panalytical X’Pert PRO diffractometer with CuK$_\alpha$ radiation, a scanning step of 0.05° and a collecting time of 5 seconds per step. Quantitative Rietveld calculations [13] were done using Bruker-AXS TOPAS, version 2.1 [14,15] for phase determination. For these calculations, the lattice parameter, the crystalline size and the scale were adjusted and the fraction of crystalline phases determined.

The surface specific area was evaluated both on the as-received and on the processed powders, by means of the BET method using a Micromeritics Gemini 2375. The particle size measurements were performed both on the as-received and on the processed powders by a CILAS (Company Industrielle des Lasers) 1090 laser particle size analyzer.

3. Results and discussion

The initial pellet, made up of Y$_2$O$_3$ and Al$_2$O$_3$, is shown in Fig. 1a and consists of irregularly shaped particles. The smallest ones are Y$_2$O$_3$. No significant changes were observed at 1,000 °C, Fig. 1b. The morphological aspects of heat treated pellets at 1,200 °C, 1,400 °C and 1,600 °C, presented in Figs. 1c, d and e, respectively, revealed that they consisted of a fine particle network surrounded by big voids with extensive necking between particles, whose size increases with temperature, respectively at 1,200 °C, 1,400 °C and 1,600 °C.

Fig. 1 – (a) Microstructure of the green body; (b) no significant changes were observed at 1,000 °C; (c), (d) and (e) the pellets consisted of a fine particle network surrounded by big voids with extensive necking between particles, whose size increases with temperature, respectively at 1,200 °C, 1,400 °C and 1,600 °C.
The milled powder sample observations confirmed the presence of Al$_2$O$_3$ and Y$_2$O$_3$ phases. From the quantitative XRD, it was possible to confirm the existence of Al$_2$O$_3$ contamination due to the milling balls, as the measured Al$_2$O$_3$ concentration was 70.6 wt%, higher than the initial eutectic composition (63.65 wt%).

At 1,200 °C, most YAG was formed with 53.9 wt%, but there was still the presence of an intermediary phase named YAlO$_3$ (YAP – yttrium aluminum perovskite) with 5.5 wt%. At 1,400 °C, the YAP reacted with Al$_2$O$_3$ yielding YAG full phase transformation after three hours of heat treatment, with 61.3 wt%, near the expected composite composition, of 63.7 wt% [18].

According to the literature, regardless of the molar ratio used between the initial Al$_2$O$_3$ and Y$_2$O$_3$ powders, solid-state reaction develops in three stages [16,19], described by Eqs. (1) to (3):

$$2Y_2O_3 + Al_2O_3 = Y_4Al_2O_9 \text{ (YAM, 900-1,100 °C)} \quad (1)$$

$$Y_4Al_2O_9 + Al_2O_3 = 4YAlO_3 \text{ (YAP, 1,100-1,250 °C)} \quad (2)$$

$$3YAlO_3 + Al_2O_3 = Y_3Al_5O_{12} \text{ (YAG, 1,250-1,600 °C)} \quad (3)$$

Temperatures in parentheses indicate the beginning range of phase formation. The reactions occur by diffusion of O and Al ions toward the other phases. However, the complete transformation demands time, higher temperatures and powders reactivity. The complete YAG formation by solid-state reaction is only possible with heating at 1,600 °C by 20 hours or at 1,700 °C [16,19-21].

The lowest temperature of YAG full formation was obtained by co-precipitation method by Li [22], at 800 °C, with 2 hours.

Table 1 – Rietveld X-ray Diffraction quantitative results (wt. %)

<table>
<thead>
<tr>
<th>Sample/Phase</th>
<th>Al$_2$O$_3$</th>
<th>Y$_2$O$_3$</th>
<th>YAlO$_3$</th>
<th>YAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$-Y$_2$O$_3$ (120 min milling time)</td>
<td>70.6</td>
<td>29.4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1,200 °C heat treated</td>
<td>40.6</td>
<td>–</td>
<td>5.5</td>
<td>53.9</td>
</tr>
<tr>
<td>1,400 °C heat treated</td>
<td>38.7</td>
<td>–</td>
<td>–</td>
<td>61.3</td>
</tr>
</tbody>
</table>

Fig. 2 – Rietveld calculations of the (a) milled powders; (b) 1,200 °C and (c) 1,400 °C. YAG: yttrium aluminum garnet.
heat treatment. There was no intermediary phase formation. According to the author, the lowest formation temperature was possible due to the good homogeneity of the reagents, in the order of nanometers.

Wen [19] used a mixed process, with the use of chemical method and the solid state reaction. It was initially produced nanometer Y_2O_3 by the chemical method, which was later joined with powdered commercial Al_2O_3 with 220 nm medium particle size. The YAG was produced by solid state reaction by heating the mixture at 1,300 $^\circ$C for 2 hours. According to the researcher, a good mix and high dispersion and activity of initial powders were responsible for the low temperature YAG formation in comparison to the solid state reaction method.

This phase comes from a second solid state reaction for YAG formation, where YAP is formed from $\text{Y}_4\text{Al}_2\text{O}_9$ (YAM – yttrium aluminum monoclinic) consumption. The YAM formation can be detected between 950 $^\circ$C and 1,000 $^\circ$C. The temperature increase above 1,000 $^\circ$C facilitates the formation of the YAP phase [16,19].

Palmero [23] found an initial amount of YAG at 1,300 $^\circ$C. However, its complete formation was given only at 1,500 $^\circ$C.

The ICSD (Inorganic Crystal Structure Database) files used in TOPAS with crystallographic information were: 86817 for Y_2O_3; 93096 for Al_2O_3; 86817 for YAO_2 and 96635 for YAG. This ICSD files contains all crystallographic phase information necessary for Rietveld calculations, as the space group, atomic positions, lattice sites and lattice parameters.

Fig. 3 shows the BET results, for the as-received powders, for the Al_2O_3 and Y_2O_3 (AYO), and for Al_2O_3 and YAG (AYE) mixtures as a function of milling time. The milling process provided a substantial increase of the superficial area which is very important to speed up the sintering step.

Fig. 4a and b shows the particle size evolution of Al_2O_3-Y_2O_3 and Al_2O_3-YAG mixtures with the milling time, where the three curves represents the d_{10}, d_{50} and d_{90} particle size distribution. This notation indicates that 10%, 50% e 90% of the particle volume are below the particle size indicated. The Al_2O_3-Y_2O_3 mixture distribution curve (Fig. 4a) showed an initial substantial decrease of the particle size that leveled off for milling times above 60 min, even though the superficial area (Fig. 3) showed a continuous increase with the milling time. The Al_2O_3-YAG mixture distribution curve (Fig. 4b) showed a constant decrease of the particle size with the milling time. Despite the observed very small reduction of the particle size, the area measured by BET increased with milling time.

It is probable that the smallest particles were bonding by the milling process with a very rough surface that would increase the surface area measured by BET (Fig. 3) without a substantial decrease of particle sizes (Fig. 4). Indeed, Fig. 5 seems to corroborate this process. Fig. 5a has revealed submicron particles with irregular borders and shapes, and particle morphology with different aspect ratios. This latter feature corresponds to the original powder morphology, before milling. It is observed the formation of clusters of submicron

![Fig. 3 – BET superficial area variation with milling time of the Al_2O_3-Y_2O_3 mixture.](image-url)

![Fig. 4 – d_{10}, d_{50} and d_{90} particle size distribution of (a) Al_2O_3 and Y_2O_3 and (b) Al_2O_3 and yttrium aluminum garnet powders with milling time.](image-url)
particles which can lead to the important difference between the results of the particle size and the superficial area analysis. Fig. 5b shows submicron particles with less irregular and round borders as well as aspect ratio near to one, but also with clusters of particles.

Figs. 6a and 6b show \(\text{Al}_2\text{O}_3\)-YAG composite particles with 120 min. milling time on TEM, under 40,000 and 80,000× magnification. The presented process resulted in a powder with a complex morphology, consisting of softly agglomerated submicrometer irregular shapes.

This figure also presents the EDS spectrum from the numbered particles. The analysis pointed that particle 1 consists of Al and O, which probably indicates an \(\text{Al}_2\text{O}_3\) particle. The other particles, 2, 3 and 4, consist of Al, O and Y, which may identify YAG particles. The source of Cu in the EDS spectrums corresponds to the holder.

The morphology did not allow establishing differences among the particles. Nevertheless, the absence of phase contrast and the EDS results corroborates the conclusion that the particles are homogeneous and distinct. Other studies have reported softly agglomerated, submicrometer and distinct particles of \(\text{Al}_2\text{O}_3 \) and YAG in the YAG or \(\text{Al}_2\text{O}_3\)-YAG powder production by other methods: a ball-mill technique in an aqueous medium [24], a co-precipitation method [3] and an aqueous sol-gel method [25].

4. Conclusions

The results revealed that the YAG was fully formed from a mixture of \(\text{Al}_2\text{O}_3 \) and \(\text{Y}_2\text{O}_3 \) milled for 2 hours and heat treated after 1,400°C for 3 hours. The proposed process provides a much lower temperature for the YAG formation compared with the minimum of 1,600°C reported in the literature for normal grain size raw materials.

The particle size studies of the \(\text{Al}_2\text{O}_3\)-YAG milled powders were able to determine the optimal milling time around 120 min. The formation of agglomerated submicron \(\text{Y}_2\text{O}_3 \) particles leads to important differences between the results of the particle size and the superficial area analysis. X-ray characterization revealed the presence of an intermediate...
phase, YAlO$_3$, for heat treatment at 1,200 °C, which was observed in previous studies [12,18].

The quantitative XRD with Rietveld calculations revealed Al$_2$O$_3$ contamination in the composite powder, which changed the stoichiometry of the initial solid-state reaction. It was not possible to establish the initial temperature for the formation of YAG, but at 1,200 °C it had already a major amount compared to the YAlO$_3$ phase.

Further studies are on the way, where the full transformation temperature will be evaluated with sharper step range. Also the phase formation kinetics will be investigated for processing optimization with the characterization of the possible intermediary phases like YAlO$_3$ and Y$_4$Al$_2$O$_9$, as described before [15,18].

The presented process resulted in an Al$_2$O$_3$ and YAG powders with a complex morphology, consisting of a softly agglomerated submicrometer irregular shapes.

Acknowledgements

The authors would like to thanks: E.S. Lima the support of IEN in the BET measurements; J.B. de Campos the support of MCT; R.R. de Avillez acknowledges the support of CNPq.

REFERENCES