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a  b s  t  r  a  c  t

While  commercial  additive  manufacturing  processes  involving  direct  metal  wire  or  powder

deposition  along  with  powder  bed  fusion  technologies  using  laser  and  electron  beam  melt-

ing  have  proliferated  over  the  past  decade,  inkjet  printing  using  molten  metal  droplets  for

direct,  3D  printing  has  been  elusive.  In  this  paper  we  review  the  more  than  three  decades  of

development  of  metal  droplet  generation  for  precision  additive  manufacturing  applications

utilizing  advanced,  high-temperature  metals  and  alloys.  Issues  concerning  process  opti-

mization,  including  product  structure  and  properties  affected  by  oxidation  are  discussed

and  some  comparisons  of  related  additive  manufactured  microstructures  are  presented.
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1.  Introduction

Discussions  of  new  manufacturing  paradigms  usually  invoke
comparisons  between  more  traditional  subtractive  manufac-
turing  and  additive  manufacturing  (AM),  having  historical
roots  which  can  go  back  nearly  150 years  in  the  context  of
photo-sculpture,  topography,  and  lithography  in  various  forms
[1]. Photolithography  and  stereolithography  (SL) evolved  as
AM  technologies  using  laser  beams  to  cure  (or  solidify)  pho-
tosensitive  polymers  leading  to  photolithography  central  to
integrated  circuit  and  multi-layer  device  fabrication  which
continues  to  evolve  today.  Simultaneously,  powder  spray  and
weld-metal  overlay  technologies  evolved  as  a  means  to  repair
worn  surfaces  and  associated  surface  degradation  as  well  as
surface  (layer)  modi“cation  or  hardening  using  electron  or
laser  beam  melting  of  injected  metal  alloy  or  hard  compound
particles  or  powders  [2…5].  A.  Ciraud  [6]  in  a  1972 patent,
introduced  the  concept  of  metal  layer  fabrication  by  selec-
tively  melting  powders  using  electron,  laser  or  plasma  beams.
A  decade  later,  Hikodama  [7]  described  the  “rst  rapid  proto-
typing  (RP) system,  while  Herbert  [8]  almost  simultaneously
described  the  earliest  3D  CAD-driven  laser  stereolithography
system.  This  was  followed  by  the  founding  of  one  of  the  “rst
commercial  AM  companies  by  Charles  Hull  (ca.  1986) utilizing
CAD-driven  SL to  build  layer-by-layer  solid  structures.  Other
RP involving  solid  freeform  fabrication  (SSF) began  to  evolve
in  the  late  1980 and  early  1990 period,  which  utilized  metal
wire  feedstock  melted  by  laser  or  electron  beams  or  similar
schemes  using  powder  feed  delivery  nozzles  forming  layer-
by-layer  solid  objects  as  illustrated  schematically  in  Fig.  1(a)
and  (b) [9,10].  Laser  wire  feedstock  melting  evolved  as  laser
cladding-based  technologies  similar  to  weld  surface  cladding
or  direct  metal  deposition  (DMD),  a  process  referred  to  as  laser
engineered  net  shaping  (LENS) of  AM  metal  objects  [11,12].  A
similar  process  using  electron  beam  melting  of  a  feed  wire
in  vacuum  was  also  developed  as  electron  beam  free-form
fabrication  (EBF3) [13]. Laser  sintering  of  powder  as  shown
in  Fig.  1(b) evolved  as  direct  metal  laser  sintering  (DMLS)  or
selective  laser  sintering  (SLS), and  both  wire  and  powder  feed
processes  have  been  referred  to  as  direct  energy  deposition
(DED) processes.
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Fig.  1  … Schematic  comparisons  of  metal  AM  processes  and
systems.  (a) Laser  or  electron  beam  cladding  using  wire
feed  process.  (b) Laser  or  electron  beam  sintering  based
systems.  System  can  incorporate  multiple  powder  feeders.
(c) Powder  bed  fusion  processes  using  electron  or  laser
beam  selective  melting.  Powder  is  rolled  or  raked  from
supply  container  or  cassettes.  (d)  Binder  jet  powder  process
which  requires  post  sintering  to  permanently  bind  metal
powder  and  expel  binder.  Unbound  powder  is  recovered.

Powder-bed  fusion  technologies  also  evolved  in  the  1990s
in  part  as  an  extension  of  SLS. Two  popular  methodologies
became  commercialized  as  shown  schematically  in  Fig.  1(c)
[14].  In  Fig.  1(c), powder  from  a  reservoir  is  rolled  into  a  layer
which  is  selectively  melted  using  a  CAD-driven  laser  beam,
while  alternatively  in  Fig.  1(c), powder  is  gravity  fed  from  cas-
settes  which  is  racked  into  a  layer  and  selectively  melted  by  a
CAD-driven  electron  beam.  Fig.  1(c) uses  an  inert  gas  (Ar  or  N)
environment  for  laser  melting  while  electron  beam  melting  is
in  vacuum.  The  laser  melting  process  is  referred  to  as  selective
laser  melting  (SLM), while  the  corresponding  electron  beam
melting  process  is  referred  to  as  electron  beam  melting  (EBM).
A  process  devoid  of  laser  or  electron  beam  sintering  or  melting
uses  a  powder  bed,  which  is  selectively  spread  in  a  layer  from
a  movable  powder  nozzle.  This  is  followed  by  selective  drop-
ping  of  a  suitable  binder  from  an  ink-jet  printer  head  directed
by  a  CAD  program  to  create  a  metal/binder  product  which  is
sintered  at  high  temperature  to  remove  the  binder  and  sinter
(solidify)  the  metal  powder.  This  process,  shown  schemati-
cally  in  Fig.  1(d)  is  variously  referred  to  as  binder  jetting  [15],
powder  bed/inkjet  printing,  drop-on-powder  printing,  etc.  The
binder/powder  product  is  extracted  from  the  building  process,
and  after  removal  of  excess  or  unbound  powder,  is  sintered  at
high  temperature  as  the  binder  is  vaporized.  A  variance  of  this
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Fig.  2  … Composite  view  of  Ti-6Al-4V  powder  (a) having  nominal  composition  shown  in  energy-dispersive  X-ray  spectrum
(b); typically  used  in  electron  beam  melting  (EBM) system  shown  schematically  in  (c): 1  … electron  gun;  2  … focus  and  beam
de”ection;  3  … powder  cassettes;  4  … layer  raking  system;  5  … specimen/product  build  and  build  table  which  drops  down  with
each  layer  processing.

process  deposits  a  metal  powder  and  binder  precursor  •inkŽ
aggregate  on  a  substrate  which  is  sintered  or  melted  by  a  laser
or  electron  beam  as  the  binder  is  expelled.

2.  Examples  of  powder  bed  melt  3D  (AM)
products  and  microstructures  in  contrast  to
wire  and  powder  feed  technologies

It  is  interesting  to  examine  the  fundamental  schematic  views
for  AM  processes  shown  in  Fig.  1 in  the  context  of  pro-
cess  variances  and  parameter  variations  necessary  to  achieve
optimized  product  fabrication.  For  example,  in  Fig.  1(a), rep-
resenting  LENS or  EBF3 processes,  the  layer  (or  deposit)
thickness  will  depend  upon  wire  diameter  and  feed  rate  rela-
tive  to  the  laser  or  electron  beam  power.  Similarly,  in  Fig.  1(b),

the  powder  size  and  size  distribution  as  well  as  the  powder
feed  rate  associated  with  the  SLS or  DMLS  processes  will  have
a  similar  effect.  In  both  wire  feed  and  powder  feed  processes,
Fig.  1(a) and  (b) respectively,  it  is  possible  to  add  multiple  (dif-
ferent)  metal  or  alloy  wire  or  powder  feed  systems  to  allow
for  functional  grading  of  the  deposit  or  multiple  metal  or
alloy  component  fabrication  and  integration  in  producing  a
product.  This  can  include  metal/composite  wire  or  powder
injection  or  the  use  of  separate  hard  (ceramic)  powder  feed
nozzles.  Part  resolution  and  surface  “nish  will  depend  upon
these  variables,  and  part  build  rates  for  commercial  systems
utilizing  these  concepts  have  been  observed  to  vary  from
around  70  cm 3/h  for  LENS systems  to  as  high  as  700 cm 3/h
for  EBF3 systems.  Wire  feed  systems  employing  a  laser  can
integrate  an  inert  gas  shroud  to  prevent  excessive  melt
zone  oxidation,  and  can  effectively  repair  or  resurface  large
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Fig.  3  … Optical  micrograph  sequences  showing  microstructure  variations  for  different  thermal  processing  conditions  for
EBM-fabricated  Ti-6Al-4V  products.  (a) to  (c) show  � -phase  acicular  grains  increasing  in  thickness  for  1  (3 � m),  2  (4.5  � m)
and  3  (6 � m)  melt  passes  respectively  for  cm  thick  specimens.  (d)…(f) show  decreasing  � -phase  thickness  for  mm  thick
specimens  for  (d)  (top)  and  (e) (bottom);  and  1  pass  in  (f)  creating  <2  � m  spaced  � � -phase  platelets  as  a  consequence  of  rapid
cooling  in  a  foam  ligament  thin  section.

con“gurations,  while  commercial  LENS systems  can  build
products  measuring  nearly  1 m 3;  although  LENS is  generally
a  low-dimensional  accuracy  process.

In  the  direct  metal  sintering  or  melting  AM  processes
which  can  be  con“gured  in  Fig.  1(a) and  (b), relatively  com-
plex  geometries  can  be  fabricated  with  no  unmelted  feed
wire  or  powder  to  be  removed  [16]. This  is  not  the  case  for
the  powder  bed  fusion  processes  depicted  in  Fig.  1(c) and
(d)  where  unmelted  or  unsintered  powder  must  be  removed.

This  requires  open-cellular  or  open-porosity  geometries  to
allow  the  ef“cient  removal  of  the  powder.  Systems  illustrated
schematically  in  Fig.  1(a)…(c) can  also  be  envisioned  as  building
new  melt  layers  on  previously  solidi“ed  layers,  and  the  solid-
i“cation  of  successive  melt  layers  will  be  variously  in”uenced
by  the  previous  crystal  structure  (and  structure  orientation)  of
the  (solid)  layer;  providing  varying  degrees  of  epitaxy  or  epi-
taxial  growth  layer-by-layer  as  recently  described  by  Basak  and
Das  [17]. As  a  consequence  of  layer-by-layer  epitaxy,  many  AM
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Fig.  4  … Comparison  of  mechanical  properties  of
as-fabricated  SLM  and  EBM  Ti-6Al-4V  specimens  with
corresponding  wrought  and  cast  and  HIPed  specimens.  The
circled  numbers  represent  nominal  Rockwell  C-scale  (HRC)
hardness.  HRC 37  noted  for  wrought  material  denotes
annealed  product.

products  built  from  either  wire  or  powder  feed  stock,  as  well
as  powder-bed  fusion  processes  (Fig.  1(c)) can  produce  varia-
tions  of  directional  or  extended  microstructures  in  the  build
direction  (or  Z-axis  direction)  illustrated  in  Fig.  1(a)…(c). How-
ever,  LENS and  SLS as  well  as  SLM  products  usually  require
post-process  HIPing  of  the  AM  product  similar  to  contempo-
rary  cast  products  because  of  process  induced  strains  as  well
process  introduced  porosities.

Although  somewhat  limited  in  process  cost  and  ”exibility
in  product  development,  as  well  as  AM  product  size,  powder
bed  fusion  processes  involving  laser  (SLM) and  electron  beam
(EBM) melting  of  powders  have  proliferated  worldwide  as  a
consequence  of  commercial  system  availability.  For  example,
in  2014, 42 Arcam  EBM systems  were  purchased  while  EOS,
SLM  solutions,  and  Concept  Laser  sold  a  combined  210 SLM
units  worldwide;  and  overall  sales  increased  more  than  50% in
2015 [18].  Correspondingly,  metal  and  alloy  powder  sales  have
also  increased  in  a  similar  fashion.  But  powder  costs  in  con-
trast  to  cast  or  wrought  precursor  metals  and  alloys  are  more
than  10 times  the  unit  price.  On  the  other  hand,  conventional,

Fig.  5  … Optical  micrograph  showing  columnar  grains  (GB) and  directional  carbide  (Cr23C6) architectures  within  these  grains
parallel  to  the  build  direction  for  EBM-fabricated  Co-Cr  alloy.  The  image  plane  is  parallel  to  the  vertical  specimen  (product)
plane.
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subtractive  manufacturing  of  products  utilizing  these  precur-
sors  often  wastes  as  much  as  90% while  the  required  tooling
and  subsequent  processing  adds  additional  product  costs.

2.1.  EBM fabrication  of  Ti-6Al-4V  powder  products

Fig.  2 illustrates  typical  precursor,  atomized  powder  for  EBM
processing  along  with  a  more  generalized  system  view  of  an
EBM machine.  Ti-6Al-4V  represents  one  of  the  most  impor-
tant  powder  materials  used  in  both  EBM and  SLM  processing
over  the  past  15 years  as  a  consequence  of  its  importance
in  medical  device  and  aerospace  component  fabrication.  An
important  feature  of  powder  bed  fusion  technologies,  Fig.  1(c),
involves  the  proper  selection  of  powder  size  and  size  distri-
bution,  since  a  raked  or  rolled  powder  bed  is  optimized  by
space  “lling  by  smaller  particles,  and  smaller  particle  sizes
require  less  energy  to  melt.  In  addition,  unlike  the  much
larger  technology  of  powder  metallurgy,  so-called  green  com-
pacts  do  not  require  ”owable,  spherical  powders  which  are
essential  in  rolling  or  raking  powder  beds  in  SLM  or  EBM
processes.

The  attendant  microstructures  are  also  in”uenced  by  the
beam  heating  or  energy  deposition  which  depends  on  the
beam  diameter,  raster  speed,  and  current  density  in  the  case
of  EBM. In  addition,  the  necessity  to  preheat  each  layer  prior
to  the  melt  scan,  the  pre-heat  scan  rate  and  beam  current,
as  well  as  remelt  strategies  will  selectively  and  often  sys-
tematically  alter  the  microstructure,  and  the  residual  product
properties.  The  product  volume  (or  size)  will  also  in”uence
the  thermal  issues,  primarily  cooling  or  rate  of  cooling,  which
can  also  have  a  signi“cant  effect  on  the  microstructure.
Fig.  3 illustrates  a  few  of  these  features  for  EBM processed
Ti-6Al-4V  powder  as  represented  in  Fig.  2.  The  sequence
of  optical  micrographs  in  Fig.  2(a)…(c) represents  1, 2, or  3
melt  passes  of  the  electron  beam,  respectively.  Each  melt
pass  increases  the  average  thickness  (width)  of  alpha-phase
lenticular  grains  from  3 � m  in  Fig.  3(a) to  4.5 � m  and  6 � m
in  Fig.  3(b) and  (c), respectively,  causing  a  corresponding
decrease  in  hardness  from  Fig.  3(a)…(c). In  Fig.  3(d)…(f), the
product  cooling  rate  increases  correspondingly,  which  also
reduces  the  lenticular  alpha  grain  width  from  Fig.  3(d)…(e)
because  of  the  heating  and  the  annealing  which  results  in
larger-size  product  fabrication.  Fig.  3(f)  shows  a  transforma-
tion  from  alpha  to  alpha-prime  phase  plates  having  a  40%
hardness  increase  from  Fig.  3(a) as  a  consequence  of  rapid
cooling  in  a  foam  ligament.  Fig.  4 compares  the  common
mechanical  properties  for  as-fabricated  EBM and  SLM  Ti-6Al-
4V  products  with  commercial  wrought  and  cast-and-HIPed
products.

2.2.  EBM fabrication  of  Co-Cr superalloy  powder
products

Fig.  5 shows  a  vertical  (plane)  section  view  of  the  as-fabricated
EBM microstructure  for  a  Co-26Cr-6Mo-0.2C  superalloy.  In  con-
trast  to  Fig.  3, there  is  a  notable  directional,  columnar  grain
(GB) structure  which  contains  columns  of  Cr23C6 carbide  pre-
cipitate  particles,  generally  parallel  to  the  build  direction
(Z-axis)  indicated  by  B. This  microstructure  has  been  described
in  detail  by  Gaytan  et  al.  [19].  Upon  HIP  and  annealing  (at

Fig.  6  … Microstructure  features  for  HIPed,  EBM-fabricated
Co-Cr  alloy  in  Fig.  5.  (a) Optical  micrograph  showing
equiaxed  grain  structure.  (b) TEM  image  showing  stacking
faults  within  the  fcc  grain  structure  in  (a).

1200 � C for  4 h  and  1220 � C for  4 h)  the  carbide  precipitates
were  observed  to  dissolve  as  the  structure  became  equiaxed
grains  (including  annealing  twins)  containing  extensive  stack-
ing  faults.  These  features  are  illustrated  in  Fig.  6(a) and
(b), respectively.  This  alloy,  in  the  form  shown  in  Fig.  6,  is
used  extensively  in  cast  and  HIP-heat-treated  commercial
(contemporary)  implants  and  other  wrought  and  cast
aerospace  components.  In  this  regard,  Fig.  7 shows  a  variety
of  CAD  models  for  open-cellular  implant  con“gurations  which
have  been  fabricated  by  EBM [19…21].  Fig.  7 illustrates  to  some
degree  the  ability  of  AM  processing  like  EBM or  SLM  to  fabricate
rather  complex  geometries  which  are  impossible  to  fabricate
by  any  conventional,  subtractive  or  variously  integrated  man-
ufacturing  processes.

As  we  noted  previously,  the  fabrication  of  complex  or
porous  geometries  as  illustrated  in  Fig.  7 require  unmelted
powder  removal.  In  addition,  conventional  powder  bed  fusion
SLM  and  EBM systems  have  build  volumes  between  about
0.1 and  0.2 cubic  meters.  Consequently,  there  are  severe
limits  on  the  complexity  and  size  of  3D  printed  parts,
and  the  requirements  for  ”owable  powder  feed  increases
the  manufacturing  costs  in  contrast  to  equivalent  weights
of  more  conventional  feed  stock,  including  wire  forms.  In
addition,  scale-up  or  enlargement  of  build  volumes  is  not
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Fig.  7  … Examples  of  complex,  open  cellular  structure  models  which  have  been  fabricated  in  various  metals  and  alloys  by
SLM  and  EBM.  (a) Porosity  variances  in  cylindrical  foam  structures.  (b) Cross-section  view  of  (a). (c) Top  view  of  (a). (d)  Foam
structure  core  surrounded  by  complex  mesh-type  cell  structure.

trivial  since  there  are  limitations  on  the  ability  to  direct
the  beam  to  extended  product  dimensions  (in  particular
an  electron  beam  in  EBM processing),  and  there  are  prob-
lems  in  maintaining  level  powder  beds  because  roller  or

rake  ”exure  can  become  serious  over  large  areas  or  powder
spans.

In  this  context,  Zenon  et  al.  [22]  have  noted  that  •Digi-
tal  printing  of  metals  is  probably  the  single  most  important
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element  missing  from  functional  3D  printing,  a  technology
that  today  still  relies  almost  entirely  on  polymer  materialsŽ.
Indeed,  to  put  metal  3D  printing;  especially  high-temperature
materials  represented  by  Figs.  5  and  6,  in  a  truly  3D  print-
ing  arena  where  large  part  manufacture  would  occur  by
directed  metal  droplet  deposition  from  a  classical  ink-jet
printer  head  will  require  novel  technology  design  and  devel-
opment.

3.  Metal  droplet  generator  design  and
development

As  Murr  [14]  has  previously  noted,  Lord  Kelvin  developed  the
“rst  printing  device  using  •ink  dropsŽ  emitted  from  an  ori“ce,
while  Hewlett  Packard  Corp.  (U.S.) introduced  the  “rst  desktop
inkjet  printer  in  1984. Fig.  8 shows  a  very  general  schematic  not
only  representing  a  so-called  drop-on-demand  printer  head
which  ejects  single  ink  drops  as  required,  but  also  conceptual
views  of  ink  drop  loading  and  droplet  deposition  issues  on
contact  with  a  substrate  surface:  forming  hydrophilic  droplet
contact  (or  contact  angles  � 90� ) and  hydrophobic  droplet
contact  (or  contact  angles  >90� ). Applied  to  metal  droplet  gen-
eration  and  3D  product  printing,  the  initial  breaklength  to
form  a  droplet  (distance  from  ori“ce  exit  surface  to  droplet
formation  in  Fig.  8) is  given  by  [23,24]:

L =  cdj

� �

We +
2We

Re

�

,  (1)

where

We  �  Weber  Number  =
�v jdj

�
(2)

Re �  Reynolds  Number  =
�v 2

j dj

�
;  (3)

�  is  the  drop  density,  �  is  the  surface  tension,  �  is  the  viscos-
ity,  v j is  the  jet  (droplet)  velocity,  and  dj is  the  jet  (or  droplet)
diameter.  c in  Eq. (1) is  a  constant.

Generally,  droplets  or  a  droplet  stream  generated  as  shown
in  Fig.  8 involves  droplet  impact  with  a  substrate  where  it
•deformsŽ  (or  splats)  and  solidi“es,  i.e.  the  droplet  makes
contact,  spreads,  and  solidi“es.  Some  drops  or  fraction  can
rebound  depending  upon  the  size,  velocity,  and  angle  the
droplet  (or  droplet  stream)  makes  with  the  line  of  emission
and  formation  from  the  ori“ce  and  the  substrate  plane.  Fig.  9
illustrates  the  splat  process  or  variances  of  the  process,  where
the  splat  diameter,  Ds, can  be  generally  expressed  by  [23]:

Ds =  dj (We/ 6)1/ 2 (4)

The  “nal  shape  of  each  solidi“ed  droplet  on  the  substrate
surface  is  a  complex  issue  affected  by  heat  transfer  and  ”uid
dynamics  occurring  at  the  droplet  collision  point  with  the  solid
substrate.

Ideally  of  course  the  droplet  must  be  in  the  liquid  state
(melt),  and  a  metal  droplet  in  a  vacuum  will  cool  only  by
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                50% bottom

Fig.  8  … Schematic  view  of  drop-on-demand  ink  jet
generator.  Droplets  can  be  considered  metal  or  alloy  melt
while  ink  •particlesŽ  can  be  hard  (ceramic)  nanoinclusions,
etc.  Droplet  deposition  on  a  substrate  is  shown  in  the
context  of  contact  or  contact  angle.
From  Murr  [14] .

radiation  heat  loss,  which  is  described  by  the  Stefan…
Boltzmann  Law  [25]:

Q
t

(cal/s ) =  e�A (T4 Š  T4
c ) (5)

where  e is  the  emissivity,  �  is  the  Stefan…Boltzmann  constant,
A  is  the  droplet  area  (surface  area  =4� r2), T  is  the  droplet
temperature  and  Tc is  the  temperature  of  the  surroundings.
Correspondingly,  the  rate  of  droplet  cooling  (or  cooling  time,
tc) will  be  governed  generally  by

tc =
Nk

2e�A

�
1

T2final
Š

1

T2start

�
,  (6)

where  k  is  the  Boltzmann  constant,  e is  the  ideal  emissivity  =  1,
N  is  the  number  of  particles;  N  =  mNA /M  (where  m  is  the  mass
of  the  object,  NA =  Arogadro•s  number,  M  =  molten  droplet
mass).  Eq. (6) assumes  in“nite  thermal  conductivity  so  that
the  temperature  of  individual  metal  droplets  is  equal  to  the
droplet  surface  temperature.  For  high-temperature  metals
such  as  Ti-6Al-4V  or  Co-Cr  alloys  illustrated  in  Figs.  4  and  5,
the  surface  tension  is  high,  as  implicit  in  Eq. (2), and  for  small
radius  (r) droplets,  A  in  Eq. (6) will  be  small;  allowing  for  slow
droplet  cooling.

Efforts  to  develop  metal  droplet  generators  began  in  the
context  of  additive  manufacturing  or  3D  printing  of  metal
products  with  the  work  of  Orme  and  Muntz  [26]  published  3
decades  ago;  followed  by  a  patent  issued  in  1990 [27].  This
work,  focused  on  droplet  generation  and  fabrication  using
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Fig.  9  … Conceptual  rendering  of  droplet  •splatŽ
con“gurations  for  melt  drop  impacting  substrate  surface.
Average  splat  diameter  is  denoted  Ds.  In  the  two  upper
splat  patterns,  a  portion  of  the  drop  rebounds.

aluminum  alloys,  was  followed  by  extensive  research  span-
ning  nearly  15 years  [28…30]. As  illustrated  schematically  in
Fig.  10, this  concept  focuses  on  the  use  of  controlled  molten
(aluminum  or  aluminum  alloy)  droplets  for  AM,  and  is  very
similar  to  the  more  general  droplet  generator  in  Fig.  8;  with
a  notable  exception  being  the  droplet  charging  and  de”ec-
tion  system  beyond  the  emitting  ori“ce.  (Many  ink  droplet
printers  also  have  scanning  electrodes.)  In  addition,  Orme
et  al.  [30]  also  noted  that  •remelting  action  of  the  previously
deposited  and  solidi“ed  material  will  insure  the  removal  of
individual  splat  boundaries  (Fig.  9) and  result  in  a  more  homo-
geneous  componentŽ;  where  remelting  thermal  requirements
were  previously  studied  analytically  by  Orme  and  Huang  [31]
and  indicated  a  minimum  substrate  temperature  existed  from
a  given  droplet  impingement  temperature  that  results  in
remelting.  This  requirement  is  similar  in  effect  to  the  sub-
strate  and  pre-heat  scan  temperatures  required  for  optimal
melting  in  powder  bed  fusion  systems  (Fig.  1(c)). Furthermore,
Orme  et  al.  [30]  observed  droplet  oxidation  in  forming  grain
structure  (and  at  the  solidi“ed  grain  boundaries)  for  aluminum
2024 alloy  AM  product  formation  in  an  inert  atmosphere  as
illustrated  in  Fig.  11.  In  addition,  Fig.  11(b) and  (c) illustrate
that  there  is  grain  growth  near  the  top  of  fabricated  prod-
ucts  similar  to  powder  bed  fusion  processes  (Fig.  3(d)  and  (e))
because  of  the  build-up  of  heat  in  the  AM  process.  In  fab-
ricating  products  as  illustrated  in  Fig.  11(a), the  build  table
(substrate)  was  moved  in  the  x…y  plane  while  the  droplet  print
head  (Fig.  10) directed  the  droplet  stream  at  relatively  small
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electrodes
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charging
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Fig.  10  … Metal  droplet  generator  schematic  based  on  the
concept  of  Orme  et  al.  [30] .

de”ection  angles.  Droplet  diameters  were  relatively  constant
at  190 � m.

Aside  from  the  work  of  Orme  and  colleagues  for  alu-
minum  alloy  AM  products  in  Fig.  11, there  have  been  few
examples  of  AM  (droplet)  product  fabrication,  while  there
have  been  numerous  research  programs  involving  other
low-temperature  metal  and  alloy  droplet  generation  and
deposition  such  as  the  work  of  Tseng  et  al.  [32], Jiang  et  al.  [33]
and  Chao  et  al.  [34]  dealing  with  Pb-Sn  droplets,  Cheng  et  al.
[35]  dealing  with  droplet-on-demand  generation  of  Sn,  Pb, and
Zn;  and  related  deposition  strategies  developed  by  Laso  et  al.
[36],  Chao  [37],  Lee et  al.  [38], and  Bollinger  and  Abhari  [39]  uti-
lizing  tin.  More  recently,  Harkness  and  Goldsmid  [40]  described
a  patent  assigned  to  Boeing  (U.S.) where  •constituent  fea-
tures  of  the  part  are  formed  by  3D  printing . . . and  the  part
to  be  manipulated  relative  to  one  or  more  print  headsŽ.
This  points  out  that  not  only  is  precision  controlled  molten
droplet  stream  production  imperative  for  advanced  AM  appli-
cations,  but  the  computer  control  of  such  printer  heads,  the
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Fig.  11  … Aluminum  2024  product  examples  fabricated  using  a  metal  droplet  generator  shown  in  Fig.  10.  (a) Examples  of
fabricated  components.  The  largest  square  tube  at  left  is  11  cm  in  length.  T  and  B indicate  component  top  and  bottom  (or
base)  respectively  in  the  building  process.  (b) Optical  micrograph  showing  oxidized  grains  � 11  cm  from  a  fabricated  cylinder
base.  (c) Grain  structure  0.5  cm  from  fabricated  cylinder  base.  Adapted  from  Orme  et  al.  [30] .  (After  Murr  and  Li  in  Ref.  [31] .
Note  magni“cation  bars  in  (b) and  (c) are  50  � m.
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Fig.  12  … Metal  droplet  generator  design  using  wire  feed  system.  (a) Single  droplet  jet  head.  (b) Cluster  jet  head  design.
Adapted  from  provisional  patent  application  number  62308821  by  Johnson  et  al.  [41] .
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clustering  of  such  heads  to  allow  multimaterial  deposition,  or
the  enhanced  quantity  of  material  deposition  is  important  for
large  structure  and  large  component  fabrication.  In  addition,
the  positioning  of  ef“cient  droplet  emitters  and  their  move-
ment  and  subsequent  droplet  stream  direction  will  require
novel  gantry  designs  and  other  diverse  deposition  schemes,
including  robot  arm  or  other  robotic  integration  into  gantry
systems  to  allow  large  structure  and  subsystem  or  component
manufacture.

3.1.  Precision metal  droplet  generator  and  cluster
design

Fig.  12 illustrates  a  compact,  single  droplet  generator  and  com-
plimentary  droplet  generator  cluster  arrangement  recently
developed  by  Johnson  et  al.  [41].  In  this  design  concept
(Fig.  12(a)) an  inductive-coupled  melt  generator  converts  a
continuous  feed  wire  supply  into  a  small  melt  pool  in  a  suit-
able  crucible  and  ori“ce  arrangement  while  a  traveling  wave
or  other  pulsing  concept  releases  droplets  forming  a  Rayleigh
jet.  The  feed  wire  can  be  preheated  prior  to  entering  the  melt
regime  and  droplets  can  be  heated  well  above  the  melting  tem-
perature.  The  metal  feed  wire  is  connected  to  a  target  potential
or  grounded,  and  a  charging  electrode  (Fig.  12(a)) charges  each
droplet  to  a  fraction  of  the  Rayleigh  limit  as  the  drop  forms  on
the  end  of  the  melt  jet  exiting  the  ori“ce  according  to  [24]:

q2 =  64� 2��r 3,  (7)

where  q is  the  charge,  �  is  the  vacuum  permittivity,  �  is  the
droplet  surface  tension  (which  will  be  lower  at  temperatures
above  the  melting  point),  and  r  is  the  droplet  radius.  Most
systems  work  � 44% of  Rayleigh  limit  to  minimize  material
and  charge  emission  when  the  droplet  deforms  dynamically
due  to  droplet  emission  dynamics.

Because,  in  principal,  the  deposition  scan  range  of  a
droplet  generator  as  in  Fig.  12(a) will  be  limited  to  a  narrow
angle  of  de”ection  using  de”ection  plates  below  the  charging
electrodes  (in  Fig.  12(a)), as  in  Fig.  10,  multiple  emitters
in  clusters  as  shown  in  Fig.  12(b) can  increase  growth  or
deposition  rates  or  deliver  different  materials  (metals  and
alloys)  or  droplet  sizes  necessary  for  component  or  sub-
component  fabrication  in  large,  integrated  AM  systems.  As
noted  previously,  clustered  droplet  generator  (emitter)  heads
can  be  mounted  on  ”exible  gantry  arrays,  robot  arms,  etc.
providing  multi-material,  multi-axial  deposition  as  shown  in
the  exaggerated  cartoon  in  Fig.  13.  It  should  be  emphasized
that  large-scale  AM,  3D  printing  systems  envisioned  in  Fig.  13
are  in  high  vacuum  in  order  to  eliminate  or  drastically  reduce
droplet  oxidation  or  other  contamination  issues.  In  addition,
the  nozzle  spacing  to  the  printing  surface  would  be  consid-
erably  reduced  from  the  exaggerated  view  provided  in  Fig.  13.
Because  the  deposition  occurs  in  relatively  thin  layers  (assum-
ing  droplet  sizes  � 20  � m),  the  prospect  for  creating  initial,
amorphous  structures  (since  cooling  rates  will  be  � 107 � C/s)
or  nanostructures,  as  implicit  on  comparing  Fig.  9(a) and  (f),
is  very  good.  In  addition,  large,  integrated  deposition  systems
implicit  in  Fig.  13 can  also  incorporate  electron  or  laser  beams
to  pre-heat  or  post-heat  (and  anneal)  deposited  layers  or
layer  portions  to  control  the  residual  microstructures  and

Metal wire
feeds

S

D

Fig.  13  … Exaggerated  cartoon  view  showing  large-scale  AM
of  aircraft  structure  and  components  using  wire  fed,  metal
droplet  generator  clusters  in  vacuum  enclosure.  The  metal
or  alloy  wires  are  fed  from  spools  (upper  left).  Modular
analytical  components  which  can  be  strategically  placed
during  the  build  process  are  denoted,  S,  for  diagnostic
source  (electron,  X-ray  beam,  etc.)  and,  D,  detector
(secondary  electron,  energy-dispersive  X-ray  spectra,  etc.).
S can  also  represent  electron  or  laser  beam  sources  for
thermal  manipulation  during  layer  building.  The
multiaxial,  clustered  droplet-emitter  heads  can  be  mounted
on  movable  gantry  arrays  or  movable  robots  or  robot  arms.

associated  properties;  or  act  as  sources  (S) along  with  selective
detectors  (D) for  in  situ,  real-time  process  observation,  anal-
ysis  and  diagnostics.  It  can  be  recognized  that  necessary  CAD
and  related,  integrated  computer  control  for  emitter  head
operation  and  metal  droplet  stream  direction,  as  well  as  their
orientation  for  optimal  deposition  will  require  a  very  large  and
sophisticated  computer  control  platform  as  a  major  process
component.

4.  Discussion  and  summary

Fig.  13 can  be  visualized  as  epitomizing  the  smart  factory
where  software  (CAD)  driven  integrated  advanced  manufac-
turing  concepts  are  combined  with  various  levels  of  AM  to
fabricate  large,  complex  structures.  This  includes  3D  metal
droplet  printing  of  complex  structures,  such  as  those  illus-
trated  in  models  in  Fig.  7,  as  well  as  closed  cell  structures,
into  a  variety  of  structural  members  (including  automotive,
aerospace,  etc.)  to  dramatically  reduce  weight  and  cost  and
increase  strength  and  related  performance.  Using  multi-wire
metal  and  alloy  cluster  3D  droplet  printers  shown  conceptu-
ally  in  Fig.  12(b), product  functionality  can  be  addressed  in
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the  integrated  manufacturing  process  exploiting  high-speed
deposition  and  multi-metal  3D  printing.  Wire  feed  systems
implicit  in  Figs.  12 and  13  can  operate  at  reduced  material
cost,  reduced  waste,  near-net  shape  fabrication,  reduced  or
eliminated  tooling,  and  product  property  and  performance
development  through  microstructure  control  as  illustrated
conceptually  in  Fig.  3. Our  analysis  is  that  parts  built  by  this
technique  have  cost  of  production  signi“cantly  lower  than
obtained  by  subtractive  processes.

It  is  apparent  that  in  addition  to  prospects  for  large-scale
AM  using  wire  feed  technologies  implicit  in  Figs.  12 and  13,
3D  droplet  printer  design  can  also  be  utilized  in  smaller-scale
machines  which  could  allow  ef“cient  customized  product  or
component  fabrication  as  well  as  scale  up  to  larger  production
arenas.  Such  smaller-scale  application  would  also  bene“t  from
lower  precursor  material  costs  and  improved  net  shaping,  as
well  as  the  elimination  of  material  removal  and  recovery  pro-
cesses  which  currently  limit  powder  bed  fusion  processes.
Droplet  printing  implicit  in  Fig.  13 can  also  be  combined  with
or  integrated  into  other  modular  processes  such  as  conven-
tional  EBM or  SLM  processes  to  fabricate  components  which
can  be  integrated  into  larger  modular  manufacturing  systems,
including  joining  and  “nishing  processes  in  an  automated,
CAD-driven  manufacturing  arena.
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