Short Communication

Flotation of fine pyrite by using N-dodecyl mercaptan as collector in natural pH pulp

Kaile Zhao\(^a,b\), Guohua Gu\(^b\), Wu Yan\(^a,\ast\), Xiaohui Wang\(^a,\ast\), Chongqing Wang\(^c\), Longhua Xu\(^b\)

\(^a\) Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, Sichuan, China
\(^b\) School of Minerals Processing and Bio-Engineering, Central South University, Changsha 410083, Hunan, China
\(^c\) School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, China

A R T I C L E I N F O

Article history:
Received 18 December 2017
Accepted 4 May 2018
Available online xxx

Keywords:
Fine pyrite
N-dodecyl mercaptan
Flotation
Pilot-scale tests

A B S T R A C T

Laboratory and pilot-scale flotation tests were conducted to investigate the effect of N-dodecyl mercaptan (NDM) on the flotation of fine pyrite. At bench scale, NDM resulted in higher recovery, and the mixed collector of NDM and potassium isoamyl xanthate (PIAX) (mass ratio of 2:1) caused the highest recovery of 96.5%. High grade and recovery of pyrite was obtained without adding any activator (CuSO\(_4\)) and modifier (H\(_2\)SO\(_4\)) in a natural pH of the pulp. Pilot-scale tests indicated that a concentrate with the grade of 50.05% S, 42.23% Fe and the recovery of 98.51% S, 96.69% Fe was achieved by using the mixed collector of NDM + PIAX at pH 6.5.

© 2018 Brazilian Metallurgical, Materials and Mining Association. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Dongbafeng has about 250 million tones of pyrite reserves with S grades as low as 15.04% in Guangxi province, China, and the pyrite mainly coexists with pyrophyllite, kaolinite and carbonates [1]. In the practice of pyrite flotation, the general method is to add modifier H\(_2\)SO\(_4\)/H\(_2\)C\(_2\)O\(_4\) and activator CuSO\(_4\) in association with collector xanthates [2-5]. Due to the fine dissemination of pyrite [6,7] (−37 μm 56.8%, −10 μm 20.3%) and the high clay contents in this low-sulphide ore [8], H\(_2\)SO\(_4\) and CuSO\(_4\) are used as modifier and activator respectively,

and potassium isoamyl xanthate (PIAX) is used as collector [9] in the pyrite flotation. Zhao et al. reported that the recovery of pyrite might decrease by 10–20% in absence of H\(_2\)SO\(_4\) [8]. However, using large quantity of H\(_2\)SO\(_4\) (8 kg/t) may contaminate the environment, accelerate equipment corrosion and increase production costs.

Dodecyl mercaptan includes N-dodecyl mercaptan (NDM, C\(_{12}\)H\(_{25}\)S) and tert dodecyl mercaptan (TDM, C\(_{12}\)H\(_{26}\)SH). TDM has been used as the collector for sulphide ores (sphalerite, arsenopyrite, molybdenite) flotation [10,11], but its application is limited due to high price, complex procedure and bad odor.

\(^\ast\) Corresponding authors.
E-mails: yan507@163.com (W. Yan), luomodeyu@163.com (X. Wang).

https://doi.org/10.1016/j.jmrt.2018.05.002

2238-7854 © 2018 Brazilian Metallurgical, Materials and Mining Association. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

TDM is the isomer of NDM, and therefore they have the same molecular formula and functional group [12,13]. NDM is odorless and low price in China and can be used in sulphide ore flotation.

In this work, the introduction of N-dodecyl mercaptan (NDM) into the fine pyrite (clay-type, <37 μm) flotation industry without adding any modifier (H₂SO₄) and activator (CuSO₄) has been successful. The objective of this work is to float fine pyrite in a natural pH pulp at bench scale and pilot scale.

2. Experimental

The raw ore used in this study was obtained from Dongbafeng Sulphur Mine of Guangxi Province, China. The sample was crushed, ground and screened into −3 mm. It contains 15.04% S, 12.95% Fe, 31.29% Al₂O₃, 24.06% SiO₂, 3.26% TiO₂, 1.84% C and 1.12% CaO. The sample is composed mainly of pyrite, pyrophyllite, bauxite, kaolinite, anatase, graphite, chloride and montmorillonite. Pyrite is the only mineral of economic value in the ore. The grain size of pyrite particles is between 1 and 1000 μm. The degree of liberation of pyrite is below 74 μm. In addition, the −37 μm and −10 μm size fractions account for 56.8% and 20.3% of the entire pyrite particles, respectively.

In laboratory and pilot-scale experiments, N-dodecyl mercaptan (NDM, CH₃(CH₂)₉CH₂SH, MW 202) and Potassium isoamyl xanthate (PIAX) were used as collectors, and sodium hexametaphosphate (SHMP) was used as the clay dispersant. Due to good natural floatability of pyrophyllite and other clay minerals [6,14], guar gum was used as the clay depressant. Sulphuric acid (H₂SO₄) and copper sulphate (CuSO₄) were used as modifier and activator respectively, and methyl isobutyl carbinol (MICB) was used as frother. The reagents used in this study were of technical purity. Pulp pH was recorded by the PHS-3 meter. Tap water was used in both grinding and flotation experiments.

In laboratory experiments, the 300 g ore was ground to −74 μm (97 wt%) in a XMB-70 rod mill at a pulp density of 50 wt%. Flotation tests were performed in a XFD-63 flotation cell (self-aeration), 1.5 dm³ for rougher-scavenger flotation and 1.0 dm³ for cleaner flotation, respectively. The impeller speed was 1590 rpm. The froth product was collected with an automatic froth scraper device. In the rougher flotation stage, the desired amount of reagents (SHMP 750 g/t, guar gum 300 g/t, NDM 100 g/t, PIAX 50 g/t, and MIBC 50 g/t) were added in the sequence to the rougher flotation cell with 3 min interval, and flotation time was 6 min. In pilot-scale trials, the processed capacity of the pilot-scale plant was 1.25 t/d (52 kg/h) feed. The pyrite flotation was carried out in a PX2-39 flotation cell (self-aeration) at a feed particle size of −74 μm (97 wt%), using a XMEL-420 × 600 mm rod mill). The volume of flotation cells for rougher-scavenger and cleaner flotation were 39 dm³ and 24 dm³, respectively. The products were collected, dried, and weighed. Determination of S was conducted by infrared carbon and sulphur analyzer (Multi EA 2000, Analytikjena Germany), and Fe content was analyzed by volumetric method (K₂Cr₂O₇). To assure the accuracy of laboratory experiments, the calculated S grade of feed should be in the range of 15.04 ± 0.04%, otherwise the experiments were repeated. The flotation flowsheet and corresponding reagent concentrations of closed flotation circuit and pilot-scale tests are given in Fig. 1.

3. Results

Fig. 2a shows the S recovery as a function of PIAX, NDM, or NDM + PIAX dosage in the rougher operation. The recovery of pyrite increased markedly with the increasing of collector dosage. Compared to PIAX, NDM resulted in higher recovery with the same collector addition. Moreover, the mixed collector greatly improved the pyrite recovery, and the highest recovery was 96.5% at 150 g/t NDM + PIAX (preferred mass ratio of 2:1). The effect of PIAX and NDM addition in the rougher operation is shown in Fig. 2b and c, respectively. Compared with PIAX, NDM showed larger effect on the recovery of pyrite. The optimum dosage was 100 g/t NDM and 50 g/t PIAX, achieving high grade pyrite with grade of 41.2% S and recovery of 96.5% S.

Based on the optimum conditions of open circuit tests, locked cycle tests were carried out at batch scale using NDM + PIAX as a mixed collector in natural pH pulp. The comparative tests (S₁) were conducted using H₂SO₄ and CuSO₄ without NDM. As shown in Fig. 1, the closed flotation circuit includes one roughing, three scavenging, and four cleaning steps. Flotation results of the average values are displayed in Table 1 (S₁, S₂). The dispersive values of the 4th, 5th and 6th cycles and their standard deviations are shown in Table 2 (S₁, S₂).

In the comparative system S₂, the reagents used in the flotation were H₂SO₄ of 8 kg/t (pH 4), CuSO₄ of 850 g/t, guar gum of 700 g/t, PIAX of 450 g/t and MIBC of 80 g/t. Under these conditions, a concentrate grade of 45.53% S at a recovery of 87.95% was achieved. To reduce reagent costs and improve the pyrite recovery, a mixed collector of NDM + PIAX (mass ratio of 2:1, the rougher concentration 150 g/t, the scavenger concentration 75 g/t, the cleaner concentration 30 g/t) was adopted in the flotation circuit. A concentrate grade of 49.23% S at a recovery of 98.33% was achieved on a feed of 15.04% S using NDM + PIAX as a mixed collector at pH 6.5. Compared with S₂, the S₁ procedure increased the grade and recovery of S by 3.70% and 10.38%, respectively. Meanwhile the tailing grade decreased from 2.55% S to 0.36% S, implying that NDM is a powerful and selective collector for fine pyrite particles.

Because of the good collection performance for fine pyrite, collector complexes of NDM + PIAX were selected in the pilot-scale tests. The pilot-scale trials were performed at the Ermei pilot-scale plant located in Sichuan, China. The pilot-scale continuous running tests were carried out more than 120 h (August, 2016). The flotation flowsheet is given in Fig. 1. The average values of flotation results are shown in Table 1 (S₃). The dispersive values of 10 groups of pyrite concentrates (every 12 h) and their standard deviations are shown in Table 2 (S₃).

In S₃ procedure, a concentrate grade of 50.05% S, 42.23% Fe at a recovery of 98.51% S, 96.69% Fe was achieved in the neutral circuit using NDM + PIAX as a mixed collector. Meanwhile, a tailing with 0.35% S and 0.61% Fe was produced. For this low-grade sulphide ore, NDM + PIAX showed an excellent collection for fine pyrite (−37 μm 56.8%), confirmed by the high grade and recovery of pyrite achieved using NDM + PIAX.
Feed
Rod mill
Classification

-74 µm 97%± 1%

- pH 6.5
- SHMP 750
- Guar gum 300
- NDM + PLAX: 100+50
- MIBC 50

Rougher
Guar gum 100
NDM + PLAX: 100+50
MIBC 10

1st cleaner
Guar gum 100
NDM + PLAX: 20+10

2nd cleaner
Guar gum 100
NDM + PLAX: 20+10

3rd cleaner
NDM + PLAX: 20+10

4th cleaner

Pyrite concentrate

Fig. 1 – The flotation flowsheet and corresponding reagent concentrations of closed flotation circuit and pilot-scale tests.

Fig. 2 – The effects of collector (PIAX, NDM, or NDM + PIAX as collector) dosage on the S recovery (a) and grade (b, c) in the rougher concentrates at pH 6.5 without H₂SO₄ and CuSO₄ addition.
Table 1 – The average values of closed flotation circuit (S₁, S₂) and pilot-scale trials (S₃).

<table>
<thead>
<tr>
<th>System</th>
<th>Products</th>
<th>Ratio (w%)</th>
<th>Grade (%)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>Fe</td>
</tr>
<tr>
<td>Locked cycle</td>
<td>Pyrite concentrate</td>
<td>30.06</td>
<td>49.23</td>
<td>41.71</td>
</tr>
<tr>
<td>flotation tests (S₁)</td>
<td>Tailing</td>
<td>69.94</td>
<td>0.36</td>
<td>0.59</td>
</tr>
<tr>
<td>NDM + PIAX (pH 6.5)</td>
<td>Feed</td>
<td>100.00</td>
<td>15.05</td>
<td>12.95</td>
</tr>
<tr>
<td>Locked cycle</td>
<td>Pyrite concentrate</td>
<td>29.02</td>
<td>45.53</td>
<td>38.23</td>
</tr>
<tr>
<td>flotation tests (S₂)</td>
<td>Tailing</td>
<td>70.98</td>
<td>2.55</td>
<td>2.62</td>
</tr>
<tr>
<td>PIAX (pH 4)</td>
<td>Feed</td>
<td>100.00</td>
<td>15.03</td>
<td>12.96</td>
</tr>
<tr>
<td>Pilot-scale tests (S₃)</td>
<td>Pyrite concentrate</td>
<td>29.65</td>
<td>50.05</td>
<td>42.23</td>
</tr>
<tr>
<td>NDM + PIAX (pH 6.5)</td>
<td>Tailing</td>
<td>70.35</td>
<td>0.35</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>Feed</td>
<td>100.00</td>
<td>15.06</td>
<td>12.95</td>
</tr>
</tbody>
</table>

* The comparative system S₂, acidic without NDM (pH 4).

Table 2 – The dispersive values of closed flotation circuit (S₁, S₂) and pilot-scale trials (S₃).

<table>
<thead>
<tr>
<th>System</th>
<th>Products</th>
<th>Ratio (w%)</th>
<th>Grade (%)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>Fe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>Fe</td>
</tr>
<tr>
<td>S₁</td>
<td>4th pyrite concentrate</td>
<td>30.11</td>
<td>49.18</td>
<td>41.42</td>
</tr>
<tr>
<td></td>
<td>5th pyrite concentrate</td>
<td>29.84</td>
<td>49.47</td>
<td>42.39</td>
</tr>
<tr>
<td></td>
<td>6th pyrite concentrate</td>
<td>30.23</td>
<td>49.04</td>
<td>41.31</td>
</tr>
<tr>
<td></td>
<td>Average value</td>
<td>30.06</td>
<td>49.23</td>
<td>41.71</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>0.199</td>
<td>0.219</td>
<td>0.594</td>
</tr>
<tr>
<td>S₂</td>
<td>4th pyrite concentrate</td>
<td>29.24</td>
<td>45.05</td>
<td>37.73</td>
</tr>
<tr>
<td></td>
<td>5th pyrite concentrate</td>
<td>29.12</td>
<td>45.23</td>
<td>37.92</td>
</tr>
<tr>
<td></td>
<td>6th pyrite concentrate</td>
<td>28.71</td>
<td>46.32</td>
<td>39.03</td>
</tr>
<tr>
<td></td>
<td>Average value</td>
<td>29.02</td>
<td>45.53</td>
<td>38.23</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>0.278</td>
<td>0.687</td>
<td>0.702</td>
</tr>
<tr>
<td>S₃</td>
<td>1–12 h pyrite concentrate</td>
<td>29.74</td>
<td>49.87</td>
<td>41.69</td>
</tr>
<tr>
<td></td>
<td>13–24 h pyrite concentrate</td>
<td>29.72</td>
<td>49.75</td>
<td>41.73</td>
</tr>
<tr>
<td></td>
<td>25–36 h pyrite concentrate</td>
<td>29.62</td>
<td>50.02</td>
<td>42.26</td>
</tr>
<tr>
<td></td>
<td>37–48 h pyrite concentrate</td>
<td>29.54</td>
<td>50.21</td>
<td>43.13</td>
</tr>
<tr>
<td></td>
<td>49–60 h pyrite concentrate</td>
<td>29.76</td>
<td>49.69</td>
<td>41.53</td>
</tr>
<tr>
<td></td>
<td>51–72 h pyrite concentrate</td>
<td>29.82</td>
<td>49.61</td>
<td>41.36</td>
</tr>
<tr>
<td></td>
<td>73–84 h pyrite concentrate</td>
<td>29.56</td>
<td>50.35</td>
<td>42.75</td>
</tr>
<tr>
<td></td>
<td>85–96 h pyrite concentrate</td>
<td>29.61</td>
<td>50.11</td>
<td>42.33</td>
</tr>
<tr>
<td></td>
<td>97–108 h pyrite concentrate</td>
<td>29.45</td>
<td>50.83</td>
<td>43.37</td>
</tr>
<tr>
<td></td>
<td>109–120 h pyrite concentrate</td>
<td>29.69</td>
<td>50.01</td>
<td>42.13</td>
</tr>
<tr>
<td></td>
<td>Average value</td>
<td>29.65</td>
<td>50.05</td>
<td>42.23</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>0.115</td>
<td>0.361</td>
<td>0.682</td>
</tr>
</tbody>
</table>

as a mixed collector. The 2:1 collector mixture NDM + PIAX showed great potential for industrial application. This study solved the problem of flotation separation of fine pyrite and clay minerals, providing technical support for flotation recovery of clay-type pyrite flotation.

4. Conclusions

In this study, a mixed collector of N-dodecyl mercaptan (NDM) and potassium isoamyl xanthate (PIAX) was developed to float fine pyrite from clay-type sulphide ore. The laboratory experiments indicated that NDM resulted in higher recovery, and the mixed collector of NDM + PIAX (mass ratio of 2:1) caused the highest recovery of 96.5% S. High grade and recovery of pyrite was obtained without adding any activator (CuSO₄) and modifier (H₂SO₄) in a natural pH of the pulp. 120-h pilot-scale tests showed that a concentrate with the grade of 50.05% S, 42.23% Fe and the recovery of 98.51% S, 96.69% Fe was achieved by using the mixed collector of NDM + PIAX at pH 6.5. The 2:1 collector mixture NDM + PIAX showed great potential for industrial application. The NDM + PIAX flotation procedure will be adopted at the Dongbafeng sulphur mine.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Grant Nos. 501404218, 51674207) and the Program of China Geological Survey (D1603.2.2) for the financial support of this research.
REFERENCES