Ganglioglioma with lytic skull lesions: a case report

D. Gurkanlar; *H. Kocak; **E. Yucel; *A. Aciduman; *A. Gunaydin; ***Ö. Ekinci and **S. Keskil

Summary

Gangliogliomas represent only 0.4% of central nervous system neoplasms and 1.3% of brain tumors. They are benign neoplasms with low morbidity and mortality and the patients usually present with seizures, but there has been no adult ganglioglioma with lytic skull lesion.

A 49-year-old right handed woman suffering from generalized epileptic seizures was admitted to our hospital. She had also left hemiparesis with 4/5 motor strength. Magnetic resonance imaging and immunohistochemical studies revealed WHO Grade II ganglioglioma. Skull X-ray showed the lytic skull lesions.

We have to consider gangliogliomas in the differential diagnosis of lytic skull lesions.

KEY WORDS: Ganglioglioma. Lytic skull lesions. Sinaptophysin

Resumen

Los gangliocitomas representan sólo el 0,4% de los tumores del sistema nervioso y el 1,3% de los tumores cerebrales. Son tumores benignos con baja mortalidad y morbilidad y los pacientes solían presentarse con crisis comicales. Nunca se ha presentado un ganglioglioma en el adulto acompañado de lesión lítica craneal.

Presentamos el caso de una mujer de 49 años, diestra, que había presentado crisis generalizadas con hemiparesia izquierda. La RM y el estudio histopatológico mostraron un ganglioglioma grado II en la clasificación de la OMS y las Rx de cráneo revelaron lesiones líticas, por lo que consideramos que este tumor debe entrar en la lista del diagnóstico diferencial de las lesiones líticas craneales.

Palabras clave: Ganglioglioma. Lesión lítica craneal. Sinaptofisina.

Introduction

Gangliogliomas were first described by Perkins in 1926 as a distinct type of benign intracranial neoplasms. Gangliogliomas are rare tumors of the central nervous system including variable portions of neuronal and glial elements. They represent only 0.4% of central nervous system (CNS) neoplasms and 1.3% of brain tumors.

These tumors are mostly found in temporalis area and usually in children and adults under 30 years of age. They are known as slow growing benign neoplasms with low morbidity and mortality. Majority of the patients present with chronic intractable seizures.

Herewith we report a case of supratentorial ganglioglioma having similar specialities with the literature, but unique with its lytic skull lesions. According to our knowledge there is no adult ganglioglioma with lytic skull lesions in the literature.

Case report

A 49-years-old right handed woman suffering from seizures was admitted to our hospital. She had generalized epileptic seizures for four years and her seizures were of intractable character since one year. She had also left hemiparesis with 4/5 motor strength.

In 1999, her Magnetic Resonance Imaging (MRI) revealed an irregular bordered right sided frontoparietal intra-axial lesion with surrounding gliosis and edema. The lesion had mass effect but there was no obvious contrast enhancement (Figure 1 A). Her EEG revealed an epileptiform activity in the right parietotemporal regions. In 2000 contrast enhancement was seen in axial T1 weighted images (WI). In 2002, her MRI revealed an isointense right

sided parasagittal frontoparietal mass, 2.5cm. in diameter on T1WI. The tumor showed marked enhancement on T1WI. There was also a cyst-like area having a signal intensity similar to cerebrospinal fluid (CSF) on T1WI and this intensity was higher than CSF on T2WI (Figure 1 B).

The skull X-rays in 2004 revealed lytic lesions located on the right frontal and the parietal bone (Figure 2). Her recent MRI revealed an isointense right sided parasagittal frontoparietal mass which had enlarged to 5cm. in diameter on T1WI. The tumor showed marked contrast enhancement on T1WI. There was also a cyst-like area with signal intensity similar to CSF on T1WI and higher than CSF on T2WI (Figure 3).

The patient was operated upon under general anaesthesia. There were lytic skull lesions on the parietal and frontal bones, the tumor was found over the dura mater while de-
Ganglioglioma with lytic skull lesions: a case report

Contrasting the parietal bone. The tumor had two components: at the centre of the tumor there was a semi-solid part which was gray in colour and around this semi-solid part there was a yellowish, solid part that had irregular borders. The tumor and the dura overlying the tumor were resected totally including the cyst like portion, but we have to underline that, the tumor had a semi-solid character and the cyst like portion was not fluid in fact, it had a solid character.

The histopathology revealed WHO Grade II ganglioglioma. There was a mixture of low grade astrocytic and ganglionic elements as observed by hematoxyline and eosin staining. We used sinaphtophysin as an immunohistochemical marker to identify the ganglion cells and glial fibrillary acidic protein (GFAP) to identify astrocytic elements.

It has been seven months since the surgery and the cranial MRI revealed no residual tumor (Figure 4) and the patient who has slight left sided hemiparesis can walk without any help and is free of seizures.

Discussion

Although gangliogliomas are slow growing benign neoplasms with both low morbidity and mortality early diagnosis and effective treatment is necessary since gangliogliomas most commonly affect children and young adults. They can be found in any part of the CNS but they are most commonly seen in temporal and then in the frontal regions. They most commonly present with seizures and 62.5% have seizures as the only presenting symptom. Once the tumor is resected, good seizure outcome is expected in patients with gangliogliomas, despite years of medically intractable epilepsy.

Gangliogliomas are frequently found to be calcified and cystic, showing contrast enhancement on both Computerized Tomography (CT) and MRI. The tumor matrix is often isodense or hyperdense in the pre-contrast CT. Better contrast enhancement can be seen both in the solid tumors and the anaplastic type. Tampier et al. preferred to use the term, “cyst-like” to describe the appearance on MRI of a well-defined area with signal intensity similar to CSF on protein density weighted images and higher than CSF on T2WI. This term is preferable since the content of the lesion is not fluid but solid, and therefore it cannot be drained but has to be removed.

Clear histopathological definition of gangliogliomas may be difficult. Confirmation requires the use of immunohistochemical markers, including sinaphtophysin as an immunohistochemical marker for ganglionic cells and neurofilament proteins.

Our case also presented with a history of seizure, but contrary to the literature she was over 30 years old, had a mass with frontoparietal localization and in spite of the better contrast enhancement she had a WHO Grade II (atypical) semi-solid ganglioglioma. Primary diagnoses of atypical ganglioglioma (WHO II) and anaplastic ganglioglioma (WHO Grade III) are rare and have not yet been described sufficiently by the WHO classification system of CNS tumors. Luyken et al. stated that, WHO Grade II and III lesions are associated with greater risk of recurrence or malignant progression. Such patients (like our patient) should be considered for long-term clinical follow-up using MRI.

In addition to the aforementioned properties, our case differs from the present literature due to the lytic skull lesions. Although Okamoto et al. reported thinning of the inner table of the skull in a child and Bradley et al. reported bone invasion of the bilateral squamous bone in a child with exophytic spicules; up to the best of our knowledge this is the first ganglioglioma throughout the literature with lytic skull lesions in an adult patient. The lytic skull lesions could be seen on X-ray graphs and contrast enhanced T1WI showed both dural invasion and invasion of the calvarial bone.

Conclusion

Many specialties of gangliogliomas have been discussed in the literature, but their osteolytic activity has never been mentioned in an adult patient. Thus, we have to consider gangliogliomas in the differential diagnosis of lytic skull lesions.

References

7. Demierre, B., Stichnoth, F.A., Hori, A., Spoerri, O.:

Corresponding address: Doğa Gurkanlar M.D. Mustafa Kemal Universitesi. Rektörlük Konutu No: 6 Antakya. Turkey

Comentario al artículo: Ganglioglioma with lytic skull lesions: a case report de Gurkanlar y cols.

En este artículo se describe un caso de ganglioglioma en una paciente de 49 años de edad, con la peculiaridad de que este tumor producía imágenes de osteolisis en la bóveda craneal. Como principal motivo para la publicación, los autores refieren que su observación es el primer caso de la literatura de un paciente adulto en el que un ganglioglioma produce lesiones osteolíticas en la bóveda craneal, por lo que este tumor debe entrar en el diagnóstico diferencial de las lesiones osteolíticas craneales. En nuestra opinión se trata de una observación curiosa, pero el hecho de que un ganglioglioma se asocie a osteolisis craneal, tal vez no deba ser considerado como una observación excepcional. Es bien conocido que los gangliogliomas pueden localizarse superficialmente en el cerebro y que ocasionalmente crecen en el espacio subaracnoideo. No obstante, la duramadre suele representar una barrera para su crecimiento, al igual que ocurre en el caso de los astrocitomas exófiticos, y por ello, creemos que, posiblemente, lo más raro de este caso es la invasión dural y el crecimiento epidural de este peculiar tumor de tipo glioneuronal. Por otra parte, la posibilidad de que los gangliogliomas se asocien a lesiones óseas de la bóveda craneal está claramente descrita en textos clásicos, como el tratado de Patología de Tumores del Sistema Nervioso de Russell y Rubinstein donde se puede leer que "...If the tumor es located superficially, there may be erosive changes of the adjacent calvarium" y de hecho, los autores ya hacen referencia en la discusión a casos de gangliogliomas infantiles con afectación ósea craneal.