Our experience with surgical treatment of lesions of nervus facialis

V. Matejčík and G. Pénzesová

Department of Neurosurgical Clinic of the Medical Faculty of Comenius University Academician L. Déér Faculty Hospital. Bratislava. Slovak Republic

Summary

Objective. The study presents the results of reconstruction surgery of lesions on nervus facialis with nervus hypoglossus and nervus accessorius performed in our clinic.

Patient group and methods. 10 patients were treated by anastomosis of nervus facialis with nervus hypoglossus (HFA), 1 patient by anastomosis of nervus facialis with nervus accessorius (AFA). All operations were performed under the microscope; HFA and AFA anastomoses were sewed without tension at perineurium. The technique of suturing of facial nerves did not differ from the suturing of peripheral nerves in extremities. For the connection of nervus VII-XII was not used plasma pasting. We did not use end to side anastomosis or reconstruction of nervus VII-VII in pontocerebellar angle, in pyramid, or symmetrical anastomoses of nervus VII-VII, in any case. The results were objectivized by a VI grade Brudny's modification of the House-Brackman classification introduced originally for scaling of the outcome of HFA anastomosis. In this study, this classification has been used for the objectivization of AFA anastomosis results.

Results. Reconstruction surgery by HFA and AFA resulted in all cases in grade III of the scale. Glossal hemiatrophy or atrophy of m. sternocleidomastoideus and m. trapesius were observed in patients treated by cross anastomosis with nervus hypoglossus or nervus accessorius. In patients treated by HFA and even more pronounced in patient with AFA anastomosis, minute synkineses in the region of labial angle, chin, also in the region of lower eyelid, occurred in the excited emotional state or during a long-lasting speech.

Major diskineses were not observed in any of reported treatments. Recovery in older patients up to 60 years was coming more slowly, in one case after 6 months.

Conclusion. Compared to AFA anastomosis, HFA anastomoses resulted in improved mimics and synkineses present here were finer. We prefer HFA anastomosis also because the discomfort caused by atrophy of m. trapesius and ni. sternocleidomastoideus was apparently more perceived by patient treated by AFA than the negative effects of hemiatrophy reported by patients treated by FIFA.

KEY WORDS: Facial nerve. Reconstruction surgery. Hypoglossus nerve. Accessories nerve.

Resumen

Objetivo. Este trabajo presenta los resultados de cirugía reparativa de lesiones del nervio facial con anastomosis con el nervio hipogloso y con el accessorio en nuestra clínica.

Grupo de pacientes y métodos. Se trataron 10 pacientes con anastomosis del nervio facial con hipogloso (AFH) y un paciente con anastomosis con el nervio accessorio, (AFA). Todas las operaciones se realizaron con microscopio. Todas las anastomosis se hicieron sin tensión en el perineuro. La técnica de sutura no difería de la habitual en otros nervios periféricos. Para la unión del VII-XII no se utilizó pegamento de plasma. No utilizamos anastomosis latero-terminal ni anastomosis de los extremos del VII lesionado en el ángulo pontocerebeloso, en la pirámide ni tampoco del VII-VII simétricos. Los resultados se objetivaron con el grado VI de Brudny, modificación de la escala de House-Brackman, clasificación propuesta para medir el pronóstico de las lesiones del facial. En este estudio se ha utilizado para objetivar el resultado de la anastomosis.

Resultados. La reconstrucción quirúrgica por anastomosis dio como resultado un grado III de la escala. Se observó hemiatrofia de la lengua y del trapezio esternocleidomastoideo. Se apreciaron mínimas discinesias en la comisura labial, mejilla y párpado inferior.

Abreviaturas. AFA: accessorius facialis anastomosis. HFA: hypoglossus facialis anastomosis.
en situaciones de alteración emocional o después de hablar largamente. No hubo discinesias importantes en ningún caso. La recuperación fue lenta en pacientes de más de 60 años; en un caso después de seis meses.

Conclusión. Si se compara la AFH con la AFA el mejor resultado se obtuvo con la anastomosis del hipogloso, tanto en la mimica como en las sincinesias. Preferimos la AFH porque la atrofia del esternocleidomastoideo y trapejio eran más molestas para el paciente que las producidas por la hemiatrofia lingual.

Introduction

Nervus facialis conducts not only motor fibres to mimic muscles but also parasympathetic effeferent fibres and taste-sensing afferent fibres, as well as motor fibres to the ear muscles and masticatory muscles. The nerve is composed of three segments:
1. Intracranial
2. Pyramidal (canalis facialis)
3. Peripheral

Injury in the first two segments causes the paralysis of one half of the face, defects in ear-drum function, in taste perception and in secretion. Injuries in the pyramidal output and foramen stylomastoideum result only in motor defects.

Lesion of facial nerve may be caused by injury. If the nerve is damaged by a sharp object (e.g. glass), it should be treated immediately. In the cases where direct re-connection is impossible, reconstruction surgery is performed by means of neural graft, or by a reconstruction heterotopic cross-innervation which includes another nerve that is completely or partially sacrificed. In the latter case, the function of one nerve is sacrificed for a gravely imperfect function of another nerve. The complete cross anastomosis includes connection of the whole nerve while only a portion of the nerve is used for the partial anastomosis. A lesion of facial nerve is the only indication of cross-reinnervation that has been clinically justified. The pre-conditions for the successful cross-reinnervation are much more complex than the pre-conditions for a direct re-joining of the nerve.

The paresis of damaged and inaccessible proximal end of nervus facialis has been resolved by anastomosis using nervus hypoglossus, nervus accessorius and the distal part of nervus facialis for more than 100 years. The first known successful reconstruction surgery of n. facialis by the use of n. hypoglossus was reported in 1900. The reliability of this first surgical procedure is unequivocal. Problems that may be present here are linked to tongue hemiatrophy (speech, swallowing) or sometimes to hypertonia, synkinesis and mimic defect. Anastomosis with n. accessorius is accompanied by atrophy of n. sternocleidomastoideus and n. trapejio.

Facial expressions represent a significant form on unconscious communication. Its absence intensifies the feeling of isolation. In addition to cosmetic defects, lagophthalmus is the major reason to the indication for facial reinnervation. The capability of reinnervation of facial muscles is preserved for a significantly longer time periods than it is in the case of skeletal muscles.

Irreversible fibrotic changes may occur in 3 years after the denervation, but the time period up to 20 years has been also observed. Successful treatment after 5-21 years have been reported in the literature. A complete recovery of the functions of mimic muscles after the injury of nervus facialis is the ideal condition. The attempts to reach this aim last for more than one and half century without full success. Ideal results of facial functional rehabilitation should include:

1. Symmetry in the quiescent state
2. Symmetry of the conscious movements
3. Improvement of the activity of oral, nasal and ocular muscles.

Although surgical reconstruction of the paresis of n. facialis has a major psychological and emotional impact on the patient, it is necessary to let them know that the success rate of the treatment is about 90% and the line mimics will not be reconstituted. Even the optimal performance of the surgery that will restore the gross facial movements will not reconstitute the fine emotional facial movements since the differentiated activity between individual rami is impossible due to aberrant regeneration. Involuntary emotional mimics will be never recovered. The aim of the presented report is to compare the effectiveness of HFA and AFA anastomoses.

Patients and methods

11 patients were treated by microsurgery on the Neurosurgical clinic in Bratislava in the time period of six years. All patients showed a complete lesion of n. facialis. The reasons of the paralysis of n. facialis included:
- a tumor of pontocerebral angle (neumoma acustici) in 10 patients
- damage after Jannett surgery indicated by pain in 1 patient.

The group of 11 treated patients consisted 3 females. Patient age ranked from 25 to 77 years with the average age of 46 years. The average interval from the diagnosis of the damage to the surgery was 7 months. We preferred cross anastomosis with n. hypoglossus -10 and with n. accessorius—1, for the treatment of the paresis of nervus facialis. These methods were considered in cases of the absence
Brudny’s Modification of House-Brackmann Scale for Grading Facial Paralysis for Reanimation With Hypoglossal Facial Anastomosis

<table>
<thead>
<tr>
<th>Grade</th>
<th>Normal</th>
<th>II Mild Dysfunction</th>
<th>III Moderate Dysfunction</th>
<th>IV Moderately Severe Dysfunction</th>
<th>V Severe Dysfunction</th>
<th>VI Total Paralysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. At repose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Appearance</td>
<td>N</td>
<td>N</td>
<td>Mild asymmetry</td>
<td>Marked asymmetry</td>
<td>Very marked asymmetry</td>
<td>Disfiguring asymmetry</td>
</tr>
<tr>
<td>2. Tone</td>
<td>N</td>
<td>N</td>
<td>Good</td>
<td>Decreased</td>
<td>Decreased</td>
<td>Increased</td>
</tr>
<tr>
<td>B. Selective volitional motion of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Forehead</td>
<td>N</td>
<td>Some</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>2. Eye closure</td>
<td>N</td>
<td>Full effortless</td>
<td>Full, with effort, or tongue motion</td>
<td>Incomplete, upon tongue motion only</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>3. Blinking</td>
<td>Spontaneous</td>
<td>Violitional</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>4. Upper lip elevation</td>
<td>N</td>
<td>Modest</td>
<td>Modest</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>5. Lower lip depression</td>
<td>N</td>
<td>Modest</td>
<td>Minimal</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>6. Smile</td>
<td>Spontaneous, symmetrical, synchronous</td>
<td>Spontaneous, symmetrical, synchronous</td>
<td>Spontaneous (modest), asymmetrical, synchronous</td>
<td>Upon tongue motion, asymmetrical, asynchronous</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>7. Lips pursing</td>
<td>N</td>
<td>N</td>
<td>Full, with sealing</td>
<td>Incomplete, no sealing</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>C. Synkinesis due to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Tongue movement</td>
<td>No abnormal facial movement</td>
<td>Minimal lower lid and mouth</td>
<td>Moderate lower lid and mouth</td>
<td>Slight lower lid and mouth</td>
<td>Slight mouth</td>
<td>Severe around eye and mouth</td>
</tr>
<tr>
<td>2. Swallowing</td>
<td>No abnormal facial movement</td>
<td>Minimal lower lid</td>
<td>Moderate lid and mouth</td>
<td>Slight lower lid and mouth</td>
<td>No facial movement</td>
<td>Severe around eye and mouth</td>
</tr>
</tbody>
</table>

Všimněte si, že nepřítomnost pohybov čela v této škále stále ešte dovodí zaradenie do stupňa III (na rozdiel od originálnej House-Brackmannovej škály, kde je to dôvodom k zaradeniu do stupňa IV)
S/P = status post anastomosis (short ≤ 1 year. long > 1 year); N = normal
of the innervation of facial muscles by the proximal part of n. facialis.

In some cases it is possible to join the descendent ramus of n. hypoglossus with the distal part of n. hypoglossus with presumed prevention of the glossal hemiatrophy.

Patients were monitored at least for 12 months after the surgery. Brudny modification of the House-Brackmann scale was used for the evaluation of all surgical interventions (Table I).

The results of EMG examinations revealed denervation in all patients. Post-treatment EMG examinations were performed repeatedly in all patients. The analysis of the results of post-treatment examinations was performed with respect to the character of the treatment.

Results

The final cosmetic effect did not include a full functional recovery in any case. Grade III of Brudny classification was obtained for all cases of HFA and AFA (Table 2).

The most frequently performed anastomosis was HFA accompanied by AFA. The first mentioned (HFA) yielded better results.

Facial symmetry was achieved in all patients, defects in swallowing or dysarthria were not observed in any of treated patients. All patients showed tarsorrhaphy in the initial phase of the paralysis of n. facialis. All patients were able to close eyelid completely (with an effort in the case of AFA anastomosis). Keratitis was not found in any of the cases. All cases showed good results with respect to the recovery of muscle tonus and facial movements. Two attempts to prevent the hemiatrophy of the tongue by a connection of descendent rams of n. hypoglossus with the distal part of n. hypoglossus can be evaluated as unsuccessful in this respect because glossal hemiatrophy could not be prevented here. In the case of HFA and AFA anastomoses were observed minute synkineses in the region of labial angle, chin and lower eyelid. More severe synkineses were observed after the AFA anastomosis, especially in the excited state or after longer speech.

Re-innervation appeared up to 2 - 4 months past the reconstruction surgery in all patients, also up to 7 months in older patients.

Post-treatment EMG was significantly restored except of the superior rams leading to m. frontalis, however, the functional results were unsatisfactory.

Discussion

Reinnervation of facial muscles after n. VII damage is important for patient from functional and social reasons. The results of facial muscles reinervation were unsatisfactory, thereby is still important dealing with this problem.

Although our study is only thin survey of the proper operations and results, n. VII is not the only nerve where is the cross anastomoses usage. We did not mentioned in our work about cross anastomoses in the treatment of brachial plexus injuries, and reconstructions of n. VII-VII in pontocerebellar angle in pyramid observed in work M. Samii (1974), by extrapyramidal pathway (N. Dott, 1958), or symetrical anastomoses of n. VII-VII (Smith, Scara Mella, Anderla 1971), etc.

Restoration of muscle activity in HFA and AFA anastomoses requires not just a perfect peripheral re-innervation but also a complete rebuilding of the central mechanisms of motility analyser based on a complete functional connection of n. hypoglossus or n. accessorius with the motile region of n. facialis. The degree of the recovery of voluntary movements after reconstruction surgery of n. facialis depends not only from the age but also on patient's moti-
Our experience with surgical treatment of lesions of nervus facialis

vation. The information about the success of suturation and about the re-innervation of mimic muscles can be obtained from the general EMG. The worst results are usually observed for n. frontalis. In spite of a weak and incomplete re-innervation of m. frontalis, the innervation of m. zygomaticus was very efficient. The ultimate cosmetic effect - a normal functional recovery - has not been obtained in any of the reported cases.

In more than the last four decades, several authors appraised hypoglosso-facial anastomoses as a reliable method for the re-innervation of facial muscles. We observed insufficiency in fine regional movements independently on other face regions as well as the absence of emotional movements on the paralyzed side. Current priority in constitution of anastomoses between n. VII and n. XII is end to side technique, n. XII left partially preserved to prevent glossal atrophy. In our two cases of hypoglosso-facial anastomosis, hemiatrophy of the tongue could not be prevented even by distal re-innervation from n. hypoglossus rami. Hypoglossofacial anastomosis ensures face symmetry and prevents the atrophy of facial musculature. The group of patient that showed facial symmetry in relaxed state as well as voluntary closing the eyelid did not achieve facial symmetry during the speech.

Comparably to Balance we registered an inferior result for AFA anastomoses. A slight asymmetry of the quiescent face and difficult eye closing represent an unfavourable result observed for the n. facial is – n. accessories anastomosis, however, the joint movements of shoulder and face were not registered. Hypotrophy of m. sternocleidomastoideus and m. trapezius were observed in this case.

Cooley reported good muscular tonus in 95% of all patients. When the hypoglossofacial anastomosis could be performed during first two years after the injury, reliable muscular tonus was present in 98% of patients. We achieved a very good or good result (Grade III of the scale) in all cases of reconstruction surgery. Fine synkineses in an excited emotional state or after a long speech were observed for all reconstruction surgical treatments. These synkineses were most pronounced for AFA anastomosis. Similar result was reported also by authors of other clinical studies. The incidence of synkineses is inversely proportional to the quality of re-innervation: the better the re-innervation, the less frequent are the synkineses. No case of spontaneous or severe synkinesis has been observed in our patients in this study.

Inferior results in cross anastomosis may be caused by two unfavourable factors:
- incomplete peripheral regeneration
- low probability for a central re-building to a new function.

The result of this treatment will thus be always worse than a direct connection or connection via the neural graft originating from the original nerve.

In spite of all facts mentioned above, we do not regard our results as definitively positive ones. Intentional and unintentional facial movements utilize different pathways, although most often mediated by n. facialis and n. hypoglossus. The results of central reconstruction (dependent much on the persistence, rehabilitation process and patient age) are incomplete. All patients showed a good peripheral innervation, recovered tones of the face and facial movements. Aberrant regeneration excludes differential activity between individual neural rami. Involuntary emotional facial expressions will never recover. Therefore suspensory facioplastic surgery is indicated in the cases when re-inervation of n. facialis is impossible or other head nerves are also injured.

References

12. Schuknecht, H.F.: Pathology of the ear. Cambridge:

Correspondence: Department of Neurosurgical Clinic of the Medical Faculty of Comenius University Academician L. Dérer Faculty Hospital. Limbová ul. 5. S33 05 Bratislava. Slovak Republic