Immunotherapy and therapeutic vaccines in HIV infection

Felipe García1, Lidia Ruiz2, Juan Carlos López-Bernaldo de Quirós3, Santiago Moreno1 and Pere Domingo1

1Servicio de Enfermedades Infecciosas. Instituto de Investigación Biomédica August Pi i Sunyer, Hospital Clínic, Universidad de Barcelona.
2Unitat VIH. Laboratori de Retrovirologia IrsiCaixa. Hospital Germans Trias i Pujol. Badalona.
3Hospital Universitario Gregorio Marañón. Madrid.

Correspondence: Dr. F. García.
E-mail: fgarcia@medicina.ub.es

Resistance to medication, adverse effects in the medium-long term, and cost are important limitations to lifelong adherence to highly active antiretroviral therapy (HAART). The combination of HAART with immune therapy to restore and/or boost immune-specific responses to HIV has been proposed, with the ultimate aim of controlling viral replication in the absence of HAART over long periods. The functional defects of the cellular and humoral responses would explain the lack of control of the immune system over viral replication. Different types of immune-mediated therapy have been investigated to solve these problems, including passive immune therapy, cytokines, structured treatment interruptions, immunosuppressors and therapeutic vaccines. Our still limited knowledge of immune mechanisms which can control HIV viral replication and of the causes of the deterioration of cellular and humoral immunity have produced only modest benefits in immune-mediated therapy, and are therefore confined to research for the time being. The availability of an optimal therapeutic vaccine would be an important scientific advance which could be compared with the arrival of protease inhibitors in clinical practice. Therefore, priority should be given to research in this field.

Key words: Immunotherapy. HIV. Therapeutic vaccines.

Immunoterapia y vacunas terapéuticas en la infección por VIH

El desarrollo de resistencia a la medicación, la aparición de efectos adversos a medio y largo plazo y el elevado coste económico constituyen importantes limitaciones para el cumplimiento de por vida de la terapia antirretroviral (TARGA). Se ha propuesto la combinación de TARGA con inmunoterapias para restaurar y/o potenciar las respuestas inmunoespecíficas frente al VIH, con el último propósito de controlar la replicación viral en ausencia de TARGA durante periodos prolongados de tiempo. Los defectos funcionales de las respuestas celulares y humorales, así como, la interrelación entre ellas explicarían la falta de control por parte del sistema inmunológico de la replicación viral. Se han investigado distintos tipos de terapias inmunomediadas para solucionar los problemas antes mencionados, entre ellas la inmunoterapia pasiva, la utilización de citocinas, las interrupciones estructuradas de tratamiento, la utilización de inmunosupresores y las vacunas terapéuticas. Los todavía limitados conocimientos que disponemos acerca de los mecanismos inmunológicos capaces de controlar la replicación viral del VIH y de las causas del deterioro de la inmunidad celular y humoral, han producido modestos beneficios de las terapias inmunomediadas obtenidos hasta la actualidad, y en una escasa o ninguna aplicabilidad en la clínica diaria, quedando, hoy por hoy, confinados al campo de la investigación. La disponibilidad de una óptima vacuna terapéutica sería un gran avance científico, comparable a la llegada de los inhibidores de la proteasa a la clínica, por lo que actualmente debe ser una línea prioritaria de investigación.

Palabras clave: Inmunoterapia. VIH. Vacunas terapéuticas.

Introduction

The advent of highly active antiretroviral therapy (HAART) has significantly reduced the morbidity and mortality of HIV-1 infection, even in those patients affected by aids–defining conditions4,5. This benefit is obtained due to an increase in the absolute number of circulating naive CD4 T lymphocytes, a concomitant reduction in the number of T lymphocytes with activation markers, and restoration of the response to memory antigens3. Nevertheless, despite the clinical efficacy of HAART4, this treatment by itself is unable to eradicate the infection, even if it were administered for more than 60 years6. This limitation is mainly because therapy cannot eliminate latent HIV-1 in the form of integrated proviral DNA, in addition to the existence of low levels of viral replication, which makes possible even cell-to-cell infection10. Furthermore, HAART is incapable of restoring the immune-specific response to HIV9,10, and, in fact, leads to a fall in the specific CTL response due to the lack of antigenic exposure10. Recent reports have shown that the helper proliferative response to HIV p24 Ag presented by some HAART patients does not reflect an improvement in the immune phenotype or function of CD4 or CD8 cells, but is secondary to the small increases in viremia typically observed in patients taking HAART11. This would explain the rapid “rebound” of viral load after suspending HAART, in a question of days or weeks, even after several years of effective therapy14,15.
This rebound occurs even if HAART is initiated in very early-stage HIV-infected patients, in whom the immune system is theoretically still well preserved (circulating CD4+ T lymphocytes > 500 cells/mL; viral load in plasma (PVL): 5,000-10,000 copies/mL). Similarly, these viral dynamics occur even when immune restoration is practically complete in terms of the homeostasis of T lymphocytes and their subpopulations, and in terms of the capacity for response to polyvalent stimuli and memory antigens with HAART26-30.

These findings reinforce the need for suitable long-term treatment. Resistance, adverse effects in the medium-long term, and cost are important limitations for lifelong adherence to this therapy26. These concerns mean that new therapeutic strategies must be evaluated. The two possibilities being investigated at present are simplification of strategy and the combination of HAART with immune therapy to restore and/or boost such immune responses with the primary objective of controlling viral replication in the absence of HAART26. The idea is that HAART-free periods could be longer if we used pre-HAART withdrawal strategies aimed at stimulating the immune system to partially control viral replication after withdrawal26.

Pathogenic basis for the design of immune-mediated strategies

The main question to be answered is whether the immune system can contain viral replication without HAART, even if only for limited periods. This hypothesis arises from the following facts:

1. Although in most infected patients replication leads to the progressive destruction of the immune system and evolves inevitably towards aids, a small number of immunologically “privileged” individuals, or “Long Term Non-Progressors” (LTNP), have a potent and sustained response of anti-HIV-1 CTL, Th cells, and neutralizing HIV-1 antibodies. This is associated with a control of viral replication and the presence of very low or undetectable viral concentrations in plasma in the absence of HAART31.

2. The anti-HIV-1 cytotoxic response (CTL) is detected in all cases studied during the acute phase of the infection, and it is believed to reduce the peak of PVL which characterizes it to the stabilization level, or “setpoint”, of PVL, which is established at the end of the acute phase. Direct data on the critical role of the CTL response in the control of viral replication have been obtained both in the infection model with macaques devoid of CD8+ T lymphocytes32-34, and in the immunodeficient murine model35.

3. There is clear evidence that a specific helper T response against HIV is crucial in obtaining an optimal specific CTL response which can control viral replication both in humans36-38 and in animal models39. This concept is consistent with other recently reported data on chronic viral infections in murine models24.

4. Studies in primate and murine models show that high levels of neutralizing antibodies can block infection regardless of the route of exposure to the virus35.

Despite the importance of the immune response in infection, it cannot contain viral replication. Alterations of the immune system may allow us to explain this inability or dysfunction. Even though CD4+ and CD8+ cells capable of secreting interferon gamma (IFN-gamma) can be found, in most HIV-infected patients, the proliferative CD4 responses are normally absent11,23,27, and the CD8+ cells are defective with regard to their cytolytic activity20,21. One explanation of these functional defects of CD4 and CD8 responses would be that the antigen-presenting functions of the dendritic cells could be deteriorated in these patients, and this could contribute to the functional defects observed in the Th1 and CTL cellular responses14,15. The absence of a correct proliferation and expansion of the CD4+ responses may in turn influence the lack of cytolytic activity of the CD8+ cells28,29. In animal models, there is a clear deficit in the secretion of cytokines by CD4+ cells which starts when PVL peaks in primary infection37. Lastly, the selective infection of HIV-specific CD4+ cells in infected patients would explain why these responses are quickly lost in HIV infection36.

Apparently, therefore, cellular and immune responses, and the relationship between them, are vital for a correct functioning of the immune system. The defects would be more from alterations of these responses than from viral escape. Different types of immune-mediated therapies have been examined to solve these problems, including passive immune therapy, cytokines, structured treatment interruptions, immunosuppressors and therapeutic vaccines (table 1). This review will try to summarize the different approaches.

Table 1. Immune-mediated therapies used in HIV-1 infection

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive immune therapy</td>
<td>With lymphocyte induction 124</td>
</tr>
<tr>
<td>Plasma infusion</td>
<td>35, 37, 39, 40</td>
</tr>
<tr>
<td>Infusion of mononuclear antibodies</td>
<td>43, 45, 46</td>
</tr>
<tr>
<td>Cytokines</td>
<td>Interleukin 2 53, 56</td>
</tr>
<tr>
<td>Low dose interleukin 2</td>
<td>125</td>
</tr>
<tr>
<td>G-CSF</td>
<td>126</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>127</td>
</tr>
<tr>
<td>IFN-alfa</td>
<td>128</td>
</tr>
<tr>
<td>Interleukin 10</td>
<td>129</td>
</tr>
<tr>
<td>Interleukin 12</td>
<td>130</td>
</tr>
<tr>
<td>Interleukin 15</td>
<td>131</td>
</tr>
<tr>
<td>Interleukin 16</td>
<td>132</td>
</tr>
<tr>
<td>Interleukin 7</td>
<td>133</td>
</tr>
<tr>
<td>Structured treatment interruptions</td>
<td>Primary infection 74</td>
</tr>
<tr>
<td>Chronic infection</td>
<td>79, 82</td>
</tr>
<tr>
<td>Immunosuppressors</td>
<td>Hydroxyurea 78, 99</td>
</tr>
<tr>
<td>Corticoids</td>
<td>134</td>
</tr>
<tr>
<td>Cyclosporine A</td>
<td>135</td>
</tr>
<tr>
<td>Mycophenolic acid</td>
<td>101, 102</td>
</tr>
<tr>
<td>Thalidomide</td>
<td>136</td>
</tr>
<tr>
<td>Therapeutic vaccines</td>
<td>Complete inactivated virus 127</td>
</tr>
<tr>
<td>DNA vaccines</td>
<td>122, 138</td>
</tr>
<tr>
<td>Recombinant adenovirus vaccines</td>
<td>139</td>
</tr>
<tr>
<td>Dendritic cell vaccines</td>
<td>113, 116</td>
</tr>
</tbody>
</table>
Passive immune therapy

Two types of passive immune therapy have been investigated in HIV-infected patients. The first type is based on infusion, of both CD4+ and CD8+ cells, and the second on plasma or neutralizing antibody infusion.

Passive immune therapy by cell infusion

Several studies on the infusion of specific CTL cells have been performed, although the results to date are not very promising33-35. Brodie et al36-37 investigated the functional activity of HIV-specific CTL cells and the capacity of these effector cells to migrate in vivo to areas of infection. Briefly, these authors expanded HIV-specific autologous CTL, grew them in vitro and injected them into HIV patients. The transferred cells retained their lytic activity in vivo, accumulate in territories close to where HIV-infected cells are found in the lymph nodes and reduce transiently the circulating levels of HIV-infected CD4+ cells. Apart from expanding and infusing CTL, other groups have tried to infuse expanded CD4+ cells in vitro by a strategy which allows virus-free cells to be conserved38. After infusion, a moderate improvement is observed in the CD4+ lymphocyte figure with a reduction in the CCR5 co-receptor, which implies a relative reduction in the infective capacity of these cells. In summary, pas-

sive therapies based on the transfer of cells are still very experimental, and have provided us with a better knowledge of the immune pathogenesis of the disease, although with no immediate clinical application.

Passive immune therapy by infusion of plasma or neutralizing antibodies

Plasma passive immune therapy (PIT) and monoclonal neutralizing antibodies appeared many years ago (al-
hough they are no longer used) for use in daily clinical practice. PIT as therapy for aids patients was investigated during the first half of the 1980s. It was proposed and ini-
tiated by Abraham Karpas, a virologist from the Universi-
ty of Cambridge (UK), who published his first results in 1988. This technique involved the intravenous infusion in advanced aids patients of plasma from asymptomatic HIV+ patients. The first study used a monthly infusion of 500 ml of plasma for 3 months in 10 advanced patients (7 with aids and 3 with ARC “aids-related complex”, ac-
cording to the classification criteria from this period). The plasma was previously inactivated with propiolactone to eliminate the infectivity of the donor virus. The results showed that PIT produced negative p24 antigenemia values and increased neutralizing activity with no adverse ef-
facts39. Shortly afterwards (1990), Karpas demonstrated the efficacy of the PIT protocol by observing reductions in circulating viral load40. In this second study, Karpas also showed that the monthly plasma infusion increased and maintained a high level of neutralizing activity in serum. The hypothesis which resulted from these studies was that asymptomatic HIV-infected patients had serum contain-
ing high titers of viral neutralizing activity, and that this activity decreased as patients progressed to aids. Karpas concluded that this neutralizing activity was cor-

related with non-progression to aids and therefore, pas-

sive transfer of these antibodies in the plasma of asympto-
matic patients would help recipients to control and slow
down the progression of their immunodeficiency41. Given that there was no treatment for the infection at this time, these studies aroused great interest in PIT as a possible therapy, with the result that PIT study groups soon began to be formed. Double-blind and placebo-controlled ran-
domized clinical trials were started with a large number of cases led by two independent groups, one in California42 and the other in Paris43. The California trial44 studied 220 aids patients with CD4+ T cell counts of between 50 and 200 cells/μl, which were randomized into three groups to receive over 12 months a monthly infusion of (i) 500 ml of hyperimmune plasma (250 ml of plasma diluted to 500 ml with 5% human serumalbumen), and (ii) 500 ml of 5% serumalbumen, as a placebo. Mortality fell and the number of CD4 cells grew compared with the placebo group, and with the group which received half the plasma dose. The French trial included 86 aids patients who were randomized to two groups to receive over 12 months a fortnightly infu-
sion of (i) 300 ml of hyperimmune plasma, and (ii) 300 ml of plasma from healthy donors (non-immune) as placebo. The group treated showed a smaller incidence of aids-
defining events (p = 0.009), a smaller accumulation of these events (3 times smaller), and a lower mortality rate (p = 0.009). The conclusion of both studies was clear, in the sense that the infusion of plasma from non-advanced pa-
tients to advanced patients had no adverse effects and was clinically useful in “curbing” progression of the disease. Later, systematic and controlled PIT clinical trials were practically abandoned, given the efficacy of the antiretro-
viral agents which appeared.

There has been renewed interest in passive immune therapy, but with specific monoclonal antibodies, based on studies of the macaque model, which show that passive transfer of antibodies prevents infection by oral, vaginal or intravenous inoculation of the virus44,45. This current inter-

est in antibodies as a potential therapy or prophylaxis is beginning to be seen in human clinical care. Phase I tri-

als have begun in infected patients to evaluate the phar-
mackinetics and safety of human monoclonal antibodies (known as 2F5 and 2G12), which were taken some years back from two non-progressors. Unlike other human mono-
clonal antibodies, these can inhibit in vitro infection by R5 strains and X4 strains46. A recent study has shown that the administration of a neutralizing antibody called

TNX-355 produces some antiviral efficacy (a fall of 0.5-1 log10) and an increase in the number of CD4+ lympho-
cytes. This effect persisted in patients for up to four weeks after infusion of the antibody47. If the efficacy of these mon-
oclonal antibodies is confirmed in humans, in vitro and ex-
perimental animal models, they may soon be clinically use-
ful, although for now they are only a promising possibility.

Cytokines

Several studies and clinical trials have used cytokines (table 1), all with the aim of restoring the cytokine bal-
ance caused by HIV infection, plasma (iii) the dose of in-

fection using neutralizing antibodies, especially that caused by specific CTL cells. The best options for human medicine are IL-2, IL-12, IL-15, growth hormone and GM-CSF.
HAART viruses than the control group, which only received one clinical trial, patients who received HAART and quiescent HIV-infected cells which, when stimulated, pro-

the virus from the reservoirs by stimulating the IL-2 of HIV-infected patients, but analysis of repertoire has not been important initially (e.g. savings in medication, reduc-
tion in the number of naïve CD4 T cells, an increase in the HIV-specific CD4 and CD8 responses, and induction in the differentiation of T cells from functional memory effector cells). These results suggest that GH produces an increase in thymopoiesis and therefore that it has important effects on the human immune system, including rever-
sion of thymic atrophy in HIV-1-infected adults. Nevertheless, after years of research, it remains unclear whether the increase in CD4+ T cells affects clinical pro-
gression positively, although there are studies in progress which try to answer these questions.

Apart from increasing total CD4+ lymphocytes, IL-2 has been used with at least three other objectives:

1. The first is as a cytokine which tries to restore the T cell repertoire by increasing the total CD4+ lymphocyte count. Progression of HIV infection is known to be associ-
ated with a more rapid loss of naïve cells than of memory cells. Immune control of viral infections depends on the immunocompetent cells having a wide repertoire, and HIV infection leads to the loss of important parts of this repertoire. Administration of IL-2 is associated with poly-
dclonal increases both of naïve cells and of memory cells in HIV-infected patients, but analysis of repertoire has shown that defects are not corrected by the administration of IL-2.

2. Therefore, the combination of IL-2 and other im-
mune-mediated therapies has been proposed to restore the dysfunction of the helper response (perhaps due to a lack of sufficient endogenous IL-2) in HIV-infected pa-
tients. Nevertheless, several pilot clinical trials have failed to show the usefulness of IL-2, at least when it is combined with structured treatment interruptions (STI), or a canarypox vaccine (ALVAC-HIV VCP 1433).

3. Some years ago, an attempt was made to eliminate the virus from the reservoirs by stimulating the IL-2 of quiescent HIV-infected cells which, when stimulated, pro-
duce viruses, which would be inactivated by HAART. In one clinical trial, patients who received HAART and IL-2 showed a lower quantity of detectable infectious viruses than the control group, which only received HAART. Nevertheless, on withdrawing therapy in both groups, the viral rebound displayed similar dynamics, which would suggest that IL-2 had little effect on the viral reservoir.

Other cytokines have been proposed in human medicine (table 1). The most important are IL-12 and IL-15, which lead to an increase in the specific CTL response in vit-
rno. Both are produced mainly in activated antigen-pre-
senting cells and are thought to promote the development of TH-1 type cellular responses. This type of response is essential for stimulating CTL responses. Other effects of these cytokines are the increase in lytic activity by the natural killer cells and the increase in the HIV-specific proliferative capacity. Petrovas et al recently reported that IL-15, administered twice a week for four weeks to SIV-infected cynomolgus macaques, increased the prolif-
eration and expansion of CD8+ cells without affecting vi-
ral replication.

The growth hormone (GH) has been suggested in clini-
cal practice for HIV-infected patients to promote the T cell response and generate a lymphopoietic effect and induce effects in peripheral lymphocytes, CLT cells, and dendritic cells.

It is the most widely studied and clinically approved drug used in immune therapy. Nevertheless, on years of research, it remains unclear whether the increase in CD4+ T cells affects clinical pro-
gression positively, although there are studies in progress which try to answer these questions.

Structured treatment interruption (STI)

Since the description of the anecdotal cases presented by Franco Lori and Douglas Nixon, the concept of anti-
retroviral therapy interruption as a therapeutic strategy has been investigated with interest by several groups. Ini-
tially, this strategy was considered as “autoimmunization” with an attenuated autologous virus, in which the attenu-
ation came from the gradual reintroduction of antiretro-

viral therapy. With time, other objectives of STI, which were not important initially (e.g. savings in medication, reduc-
tion of secondary effects, etc.), have come to the fore and are currently among the most widely investigated strategies.

Nevertheless, it must be stressed that one of the most im-
portant concerns in the application of STI in HIV+ patients receiving treatment is the risk of selecting resistance. This review will examine neither the latter type of inter-
ruptions nor the so-called “therapy vacations” used in pa-
tients experiencing therapeutic failure, rather we shall concentrate on STI as an immune-mediated strategy.

Several studies show that STI in patients who started antiretroviral therapy during the acute phase of HIV in-
fec tion allow viral replication to be controlled transiently, and stress the intrinsic potential of the immune system to ade-
quately control the disease. However, these data have not been confirmed by other groups, and it has been observed that the virologic benefit of onset during acute infection is lost over time, therefore more research is necessary into whether starting therapy (with or without STI) during the acute phase is beneficial for long-term pa-
tients.
Re-exposure to viral antigens boosts and stimulates virus-specific immune responses, although only 20% of chronic patients who use this strategy manage to effectively control viral replication in the short-medium term\(^{76-82}\). It is important to understand why there is a lack of control of viral replication despite the induction of CTL and helper responses in chronic HIV-infected patients. These conclusions serve to design other immune-mediated strategies which allow more effective control of viral replication for a longer period.

1. First, during the interruption, we can observe very high peaks of viral load in some patients and, given that the CD4\(^+\) cells with an HIV-specific response are more infected after viral rebound, the clonal expansion of these cells could occur, which may explain the lack of response\(^{76-82}\). Plana et al recently studied a group of 40 patients with intermittent therapy. In these patients, the helper response was shown to be induced weakly during the interruption cycles, and it is lost during definitive interruption of therapy\(^{86}\). This would explain the inability of the CTL response to control viral replication\(^{77,94}\). Contrary to the helper response, the CTL response is induced considerably (both in magnitude and in amplitude) after definitive interruption of antiretroviral therapy\(^{76,86}\), but it is incapable of controlling viral replication. Some authors report that CTLs induced after discontinuation of therapy would not be functional (they would be in a pre-terminal stage and would produce fewer perforins), and they attribute the inability of these strategies to stimulate an efficacious CTL response to the loss of a specific T helper response\(^{86}\). Strategies aimed at avoiding clonal detection of T cells with the capacity of an HIV-specific response caused by STI, could be predicted to improve the control of viral replication by inducing a functional CTL specific response.

2. Second, many authors have contributed data from sequencing and cloning of the env gene. They suggest that, in a viral rebound, the virus which appears may be very different from that observed in other rebounds or that which appears at baseline\(^{76,86}\), and that the specific immunity recovered is no more than an increase in the existing immunity\(^{76,86}\), probably due to the fact that they are repeatedly exposed to the same antigen\(^86\). This mobilization of viruses from different reservoirs, and the inability to create a new specific response may be what prevents efficacious control of viral replication. Therefore, we should use immunogens capable of inducing new efficacious HIV-specific responses, both functionally, since this would prevent the clonal disappearance of helper T cells and improve the CTL response, and in amplitude, so that they could control replication of ancestral viruses present in memory cells, which would finish by replicating once HAART was interrupted.

Immunosuppressors

Parallel to the fall in the CD4 count, HIV infection is characterized by an intense and sustained state of immune activation manifested by a high number of T and B lymphocytes, natural-killer cells, and a marked release of pro-inflammatory cytokines such as IL-7 and TNF-\(\alpha\)\(^{76,86}\). A constant element of this process is the high count of activated T-CD8\(^+\) clones which express surface receptors, DR\(^+\)CD38\(^+\), a phenomenon which is today considered as a true marker of disease progression\(^{78-80}\). This sustained activation process can lead to an exhaustion of the immune system, similar to an increase in cellular infectivity, thus allowing dissemination. This phenomenon of immune activation lays the foundations for the use of immunosuppressors such as corticoids, hydroxyurea (HU), mycophenolate mophetil (MPM), thalidomide and cyclosporine A, as adjuvants to antiretrovirals.

The results obtained on the control of viremia in macaques, treated since acute infection by SIV, using HU as an adjuvant and treatment interruption cycles, lead us to consider this drug as a clinically useful immunosuppressor in the future\(^{99}\). We can, therefore, formulate the hypothesis that HU inhibits activation of T lymphocytes during interruption cycles, thus preventing infection in the target cells and the production of high peaks of viral replication without destroying the specific immune response. Although it is well known and clinically proven that HU inhibits the ribonucleotide-reductase enzyme\(^{100}\), it also induces a cytostatic effect by halting the cellular cycle at the beginning of the S phase, and a reduction in cellular activity. It was this property that led Garcia et al\(^{101}\) to evaluate the usefulness of the drug in patients who were programmed to undergo intermittent interruptions of HAART. Five interruption cycles of 2 weeks’ duration were scheduled, but continuing with HU only for the last two cycles of interruption. This schedule made it possible to evaluate the effect of HU on viral dynamics between interruption cycles with and without the drug. Thus, if HU manages to reduce the initial phase of viral rebound, which, starts from the reservoirs, resting lymphocytes, macrophages, and dendritic cells, where it has been shown that HU is excellent as monotherapy\(^{102}\), the effect of HU was observed even when this ceased to be administered. Secondly, HU can slow down later phases of viral replication from activated T lymphocytes, mainly due to its cytostatic effects. In this case, the control of viral replication is only obtained by maintaining HU when HAART is withdrawn. There were no differences in viral rebound after three interruption cycles, although when HU was maintained after interruption, the viral load was on average 1 log lower than that obtained during previous interruption cycles and lower than in the control group, treated with HAART only. This phenomenon shows the cytostatic activity of HU and its potential use against the intracellular viral reservoir. From a clinical viewpoint, the use of HU significantly increased the number of patients who achieved sustained viral replication (9/9 patients with viral load < 5,000 copies RNA/mL) for 48 weeks after 5 HAART interruption cycles, regardless of baseline viral load (< 4.6 log RNA HIV).

Other groups have studied the capacity of other immunosuppressors such as mycophenolic acid as an adjuvant to HAART. Chapuis et al\(^{103}\) studied in vitro and in vivo the mechanisms by which mycophenolic acid (MPA) and its sterile derivative mycophenolate mophetil (MPM) suppressed infection by HIV. MPA selectively inhibits the synthesis of guanosine nucleotides by competitively inhibiting the dehydrogenase inosin-monophosphate enzyme. Given that there are common pathways in both ways for the synthesis of guanosine nucleotides in lympho-
cytes, MPA produces a profound cytostatic effect by deple-
tion of this substrate. Furthermore, in vitro results show
that MPA inhibits the proliferation of activated T cells,
especially in those with low or intermediate expression of
the CD4 receptor, by leading them to apoptosis even in
the presence of IL-2. These data were confirmed in a clini-
cal trial involving patients treated with abacavir and am-
lopidine, who were randomized to receive or not receive
MPA. In the MPP group, a reduction in the actively di-
viding CD4 and CD8 “pool” (K67+) was observed. Fur-
thermore, the authors suggest that MPP can have an ef-
ficacy on the “pool” of latently infected CD4 cells, as they
observed that, in patients treated with MPP, the ability
to isolate viruses from the total population of T-CD4 was
reduced. Even though MPP does not affect resting cells and
therefore does not affect their number, once they have
been activated in the presence of MPP, apoptosis and cell
death are induced. Furthermore, MMF was used as part of
a rescue schedule when there has been no clear impact on viral load
therefore does not affect their number, once they have
been activated in the presence of MPP, apoptosis and cell
death are induced. Furthermore, MMF was used as part of
a rescue schedule when there has been no clear impact on viral load
therefore does not affect their number, once they have
been activated in the presence of MPP, apoptosis and cell
death are induced. Furthermore, MMF was used as part of
a rescue schedule when there has been no clear impact on viral load
therefore does not affect their number, once they have
been activated in the presence of MPP, apoptosis and cell
death are induced. Furthermore, MMF was used as part of
a rescue schedule when there has been no clear impact on viral load
therefore does not affect their number, once they have
been activated in the presence of MPP, apoptosis and cell
death are induced. Furthermore, MMF was used as part of
a rescue schedule when there has been no clear impact on viral load
therefore does not affect their number, once they have
been activated in the presence of MPP, apoptosis and cell
death are induced. Furthermore, MMF was used as part of
a rescue schedule when there has been no clear impact on viral load
therefore does not affect their number, once they have
been activated in the presence of MPP, apoptosis and cell
death are induced. Furthermore, MMF was used as part of
a rescue schedule when there has been no clear impact on viral load.
clinical trial involving 12 patients with chronic infection receiving antiretroviral therapy from early stages of the infection, using a dendritic cell vaccine pulsed with heat-inactivated autologous viruses has offered much more moderate results[9]. In this study, a first treatment interruption 18 months before receiving the first dose of vaccine, three plasmaphereses were performed in which 1800 cc of plasma was extracted. The median viral load of patients during plasmapheresis was 27,000 copies/ml. The virus was then inactivated by heat and concentrated using ultracentrifuge in 1 cc, all under conditions of good clinical practice (GCP). A scale of five aseptically administered every six weeks. The first dose was a control with non-pulsed DC. Every pulsed vaccine contained 5 × 10^6 DC pulsed with five virions per cell during the first immunization and three virions/DC in the remaining vaccinations. In general, the results showed that a vaccine did not cause important adverse events, as in only 3 of the 60 doses administered (5%) was there an adverse reaction (only 1 mild local reaction and 2 episodes of flu symptoms 24 hours after the dose). This vaccine was able to control viral replication partially and transitorily, and was associated with a transitory, but not significant increase in the lymphoproliferative response to HIV P24 Ag, and with the changes in the CTL-specific response for peripheral HIV and in the CTL cells of lymph tissue. In lymph tissue, there was also a trend towards greater control of viral replication associated with an increase in CD4 and CTL cells in this tissue[10]. Furthermore, there was no significant increase in the neutralizing activity of the serum of these patients. Despite these moderate results, we must remember that the dose of antigen used in the human trial was 1,000 times lower that that used in macaques, therefore, new trials with a greater dose of antigen are necessary. If these results are confirmed, they would suggest that the defect in immunological control of HIV could be due to alterations in the induction phase of the immune response, which is consistent with recent studies on the induction of the immune response in the absence of a helper response[11,12], and with data which suggest that antigen-presenting functions are altered in HIV-infected patients. This could contribute to functional defects in HIV-specific CTL and helper responses[13,14].

Other vaccine trials have examined ALVAC, whose vector is a recombinant canarypox. Kinloch et al[15] recently presented long-awaited results from the QUEST study. This international study was carried out on patients who started treatment during the acute phase. After a mean of two years of virological control, 59 were randomized to receive immunization with ALVAC VPI1452, ALVAC plus Remune, or placebo. After 24 weeks’ immunization, HAART was interrupted. There was no difference between the groups in terms of viral rebound dynamics or in viral load figures.

Another therapeutic vaccination study has recently been presented by Cooper et al using patients with primary infection[16]. After a mean of four years of HAART, 35 patients with controlled viral replication were randomized to be vaccinated with a fowlpox virus-free of HIV sequences, a vector containing gag/pol sequences, or a vector containing gag/pol sequences and a gene which encodes human interferon gamma. Surprisingly, there were few differences between the groups in terms of presence of CD8 cells measured by ELISPOT or in cytolytic responses after vaccination and before interruption of treatment. Treatment was not interrupted in 10 patients. There were no differences in the control of viral replication between the placebo group and the group vaccinated with gag/pol. However, patients immunized with gag/pol and interferon gamma had better control of viral replication, with a mean viral load of 0.8 log10, less than the other two groups. The absence of immune responses in the two vaccinated groups is disappointing and the response in the interferon group is surprising.

Other vaccines with the potential to be used in therapy are those based on DNA which includes the proteins env-tat-nef. There have been tried as a preventive vaccine with promising results by inducing a primary response with DNA and a booster with the Ankara virus[17]. The vaccine tried as therapy presents the whole HIV genome minus the integrate gene and has shown promising results after intradermic administration with STI[18].

Conclusions

We have a limited knowledge of the immunological control of HIV viral replication, the causes of cellular and humoral immune deterioration, and a lack of clear immunological methods to correlate with an efficacious immune control of HIV in vivo. The efficacy of immune therapy and therapeutic vaccines has been modest in the best of cases. We must redouble our efforts to understand better the mechanisms of protection, virological control and immune deterioration. Without this knowledge, an efficacious therapeutic vaccine is a long way off. Nevertheless, given the toxicity and long-term efficacy problems with current drugs, this remains a priority line of investigation.

Acknowledgments

Some of the studies and data have received support from: Ministry of Health, Abbott Laboratories, Boehringer Ingelheim, Bristol Myers Squibb, GlaxoSmithKline, Merck Sharp and Dohme and Roche (Pierce -01/265205; SAF 01/2551, Red Tomatrica Cooperativa de Grupos de Investigacion en Salud (RIS) del Fondo de Investigacion Fumi- taria (FIS), marca de TV3, Obiols, Irsos, BBVA, Optico, Bankia. We are grateful to Dr. Teresa Gallart, Dr. Emilio Pumar and Dr. Margarita Bofill for their comments and help in preparing this manuscript.

Bibliografía

florivory virus type 1 in persons with < 250,000 CD4+ T cells and undeter-
55. Comins M, Kovacs A, Korbet S, Gio-Raonic-Kjelic J, Scuiller MC, Flen-
ham M, et al. HIV infection induces changes in CD4+ T-cell phenotype and
degradation within the CD4+ T-cell repertoire that are not immediately res-
56. Muller M, Naso G, Gencarelli G, Malinconico E, Scarielli G, Beltrami L, et al. Daily IL-2 combined with structured treatment interruptions (STI) did not increase the frequency of specific T-cell responses in patients receiving HAART within 60 days after onset primary HIV-1 Infection (PRI) by CD4+ T cells. XV In-
terleukin-15 is critical in the maintenance of human memory CD8 T cells within 90 days after onset primary HIV-1 Infection (PRI). XV In-
60. Chan TW, Sherry ST, Ostrovsko MA, Justement SJ, Rayod D, Malinco L, et al. Relationship between pre-existing viral reservoirs and the res-emer-
pence of plasma viremia after discontinuation of highly active antiretro-
62. Pirouz G, D’Ambrosio C, Mastroianni CM, Cardinale M, Socioli M, Cor-
celli G, et al. Interleukin-15 mediated interferon-gamma and beta-cro-
necin production: implications for immu-
63. Mastroianni CM, D’Ambrosio G, Pirouz G, Nuclo T, Viala V. Teasing t cells to fight HIV: time to test IL-15 for immunodeficiency? Trends in Immu-
66. Napolitano LA, Lo M, Getzky MH, Malsburg K, Burdick JS, Schluiter D, et al. Increased CD8+ T-cell maturation and circulating naive CD4+ T cells in HIV-1 in-
67. Nguyen NP, Chen J, Chen AN, De Souza Murphy WJ, Long DL, et al. Study of the immunologic effects of recombinant human growth hor-
69. Martinez-Picado J, Moro-Lapeguga K, Westphal T, Prucz J, Fievet H, Pei-
cre C, et al. Multi-center, randomized-controlled clinical trial of continuous in-
termittent HAART Guided by CD4+ T-cell count and plasma HIV-1 RNA Levels. Abstract 65. 10th conference on retrovirology and opportunistic in-
70. Martinez-Picado J, Moro-Lapeguga K, Westphal T, Prucz J, Fievet HP, Pe-
cre C, et al. Multi-center, randomized-controlled clinical trial of continuous in-
pansion of pre-terminally differentiated CD8 T cells during supervi-
73. Altfeld M, Lunzen J, Frahm N, Yu XG, Schneider C, Eldridge R, et al. Repro-
duction of human immunodeficiency virus type 1 in plasma during multiple interruptions of highly active antiretro-
74. Altfeld M, Lisa J,展会you XG, Schneider C, Eldridge R, et al. Repro-
duction of human immunodeficiency virus type 1 in plasma during multiple interruptions of highly active antiretro-
75. Smith DH, Walker BD, Cooper DA, Rosenberg BS, Rieder MJ. Is antiretro-
77. Otamea A, Prieto S, Garcia HH, Dreessen S, Faggart C, Peretti L, et al. Sti-
mulation of HIV-specific cellular immunity by structured treatment inter-
Garcia F, et al. Immunotherapy and therapeutic vaccines in HIV infection

the level of CD4+ T cells in untreated HIV-infected individuals. Proc Natl Acad Sci U S A. 2002;99:1229-34.

cophenolic acid on immune responses and on plasma and lymphatic tissue viral load during and after interruption of HAART in chronic

27. Manjani V, Kive K, Gutiérrez M, Vyas R, Boris A, Wain H, et al. The addition of mycophenolate mofetil to antiretroviral therapy including dis-
asine is associated with depletion of intracellular deoxyribonucleic acid

continuation of antiretroviral therapy commenced early during the course of human immunodeficiency virus type 1 infection, with or without adjunctive

