ABSTRACT

Objective: To assess the role of Dau c 1 in three patients with carrot induced asthma.

Material and methods: Patient 1 had asthma when handling raw carrots. Sensitization to pollens wasn’t detected. Patient 2 had rhinoconjunctivitis due to grass and olive pollen allergy. She had asthma when handling raw carrots. Patient 3 was diagnosed of rhinoconjunctivitis and asthma due to allergic sensitization to mites, several pollens and cat. She had asthma due to raw carrot ingestion and inhalation. IgE immunoblot analysis and ELISA inhibition assay were used to investigate the allergens and specific antibodies.

Results: IgE Immunoblot Analysis: Dau c 1 from carrot extract and the recombinant rDau c 1 were recognized by IgE from patients 1 and 2. Band of Bet v 1 in birch pollen extract wasn’t recognized. Patient 3 didn’t recognize any of these allergens. Specific IgE to rDau c 1 was measured by ELISA. Specific IgE ELISA-inhibition with carrot as solid phase showed an intermediate inhibition (30%) between carrot and rDau c 1 in patient 1; and a considerable inhibition (nearly 100%) between rBet v 1 and rDau c 1 in patient 2. IgE ELISA inhibition between rDau c 1 and rBet v 1, employing rDau c 1 as solid phase was made in patients 1 and 2. Bet v 1 showed less than 40% of inhibition of rDau c 1 in patient 1; and an intermediate inhibition (> 40%) between rBet v 1 and rDau c 1 in patient 2.

Conclusions: Airborne carrot allergens are able to sensitize without the implication of a previous pollen allergy. Dau c 1 was the main allergen in patient 2. In patient 1, there was a band of 30 kd that looks like the predominant allergen. Patients 1 and 2 were sensitized directly from carrot allergens. In patient 3, Dau c 1 isn’t related to the carrot allergy. Allergy to carrot in patient 3 seems to be related to her allergy to different pollens; however, it wasn’t related to birch pollen. Mediterranean countries didn’t show the same patterns of food-related pollen allergy than Nordic countries.

INTRODUCTION

The carrot (Daucus carota L.) is a vegetable that belongs to the Umbelliferae family (Apiaceae). It is an important allergenic food. Vegetables belonging to the Apiaceae family are frequent causes of pollen-related food allergy1,2. Carrot allergy is associated with the celery-carrot-birch-mugwort-spice syndrome3. In tree pollen-allergic patients, food allergy is mediated main-
ly by cross-reactivity of Bet v 1, the major allergen of birch pollen, and its homologous proteins in foods of plant origin belonging to the pathogenesis-related
protein-10 family\(^5\). The allergen Dau c 7 from carrot has been identified as a Bet v 1 homologous protein\(^5\). In patients with carrot allergy without associated sensitization to birch and mugwort pollens Bet v 1 does not appear to be a relevant allergen, suggesting that additional allergens may induce sensitization\(^6\).

Few reports of vegetable-induced respiratory symptoms have been reported\(^5\). The handling of carrot has rarely been described as a cause of asthma, and few previous reports of carrot-induced asthma have been confirmed by objective tests\(^6\). We reported a patient with carrot induced asthma, where primary sensitization due to airborne allergens of foods and the lack of pollen allergy were notorious events\(^1\).

Now, the purpose of our work is to assess the role of Dau c 1 in three patients with three different patterns of carrot induced asthma.

CASE REPORTS

Patient 1

A 47-year-old woman, who worked as a cook, suffered from asthma, contact urticaria, rhinitis and conjunctivitis when handling raw carrots. She reported minor symptoms after handling celery or other apiaceae spices. She could eat well cooked carrot. We did not detect sensitization to pollens. She did not tell any other allergic symptoms. She did not suffer any polinosis symptom.

Results of skin prick tests with common inhalants were negative. Skin tests were also performed, prick by prick, with fresh carrot and fresh celery. Skin prick tests were also performed with extracts of other Umbelliferae vegetables (cumin, coriander, aniseed, caraway, parsley, and fennel) which were prepared at 1:10 wt/vol in phosphate-buffered saline. Results of skin tests were positive in response to carrot, celery, aniseed and fennel. Rubbing test with fresh carrot was positive.

Total serum IgE was 152 kU/L. Specific IgE (CAP System FEIA; Pharmacia, Uppsala, Sweden) to carrot was 4.44 kU/L. Specific IgE to celery was 2.5 kU/L, to aniseed 0.47 kU/L, to fennel 0.5 kU/L, and to parsley 0.38 kU/L. Determinations of specific IgE (CAP System FEIA; Pharmacia, Uppsala, Sweden) to mugwort, grass and birch pollens were negative.

Inhalative provocation test was performed as a handling test. After 3 months without going to work, her asthmatic symptoms were controlled. Then, the use test with fresh carrots was performed. She was cutting little slices of 5 fresh carrots in a closed room for 5 minutes. She elicited a fall in FEV\(_1\) of 25% from baseline 10 minutes after this challenge. In a different day a conjunctival challenge test was strongly positive with a carrot extract at 1:20 wt/vol in phosphate buffer saline.

Patient 2

A 41-year-old woman suffered rhinitis, conjunctivitis and cough, with allergic sensitization to grass pollen. She referred rhinitis and asthma due to the handling of raw carrots and umbellifereae spices.

Total serum IgE was 145 kU/L. Specific IgE (CAP System FEIA; Pharmacia, Uppsala, Sweden) to carrot was 12.3 kU/L. Specific IgE to celery was 12 kU/L, fennel 2.5 kU/L, and parsley 1.6 kU/L. Specific IgE to Loliyum perenne was 0.49 kU/L, to Didea europaea 0.45 kU/L, and to mugwort, and birch pollens (CAP system FEIA) was negative.

Inhalative provocation test was performed as a handling test. She was cutting little slices of 5 fresh carrots in a closed room for 5 minutes. She elicited a fall in FEV\(_1\) of 20% from baseline 15 minutes after this challenge.

Patient 3

A 20-year-old woman was diagnosed of rhinitis, conjunctivitis and asthma due to allergic sensitization to dust mites, grass pollen, olive tree pollen, weeds pollen (Artemisia, Plantago, Rumex and Chenopodi- um) and cat. She suffered atopic dermatitis. She suffered oral allergy syndrome and asthma due to raw carrot ingestion and inhalation.

Total serum IgE was 1442 kU/L. Specific IgE to carrot (CAP System FEIA; Pharmacia, Uppsala, Sweden) was 12 kU/L. Specific IgE to celery was 7.6 kU/L, fennel 13.5 kU/L, and parsley 10.5 kU/L.

Inhalative provocation test was rejected.

IMMUNE ASSAYS

Immunoblot analysis

Protein extracts of Artemisia vulgaris, Apium graveolens, Daucus carota, Betula verrucosa and recombinant form of major allergen of carrot, rDau c 1 (Biomay) were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE).

IgE immunoblot analysis was performed with sera of the 3 patients. The binding of IgE antibody
to allergens was analyzed by Western blot using sera from the allergic patients and anti-human IgE peroxidase conjugate (Dako, Carpinteria, California, USA). Chemiluminescence detection reagents (Chemiluminescence Reagent PLUS Western lightning, Perkin Elmer) were added following the manufacturer’s instructions. Western blot revealed different IgE bindings capacities of band protein transferred from tested extracts. The allergen \(\text{Dau c1} \) from carrot extract and \(\text{rDau c1} \) were recognized by IgE antibodies from the sera of the patients 1 and 2. However, the corresponding band of \(\text{Bet v1} \) (homolog protein) in \(\text{Betula verrucosa} \) extract was not recognized by patient’s 1 and 2 sera. The serum of patient 3 did not reveal IgE binding capacity for these allergens as shown the figure 1. In patient 3, several other bands appeared.

ELISA and ELISA Inhibition assays

\(\text{rDau c1} \)-specific IgE antibodies were measured by an ELISA experiment. In brief, the plates were coated with 0.25 mg/mL of the recombinant carrot allergen. Sera were diluted 1:2. The bound IgE was detected by biotinilated mouse monoclonal anti-human IgE antibody (1:1000; 50 \(\mu \)L/well; Operon, Spain) followed by streptavidin-HRP-labelled anti-mouse IgG antibody (1:5000; 50 mL/well; Sigma); IgE binding was detected using a solution of TMB (50 \(\mu \)L/well; Sigma). The results, expressed as optical density (OD) values, were 0.309; 0.462 and 0.002 OD for the patients 1, 2 and 3 respectively.

Specific IgE ELISA-inhibition experiments were conducted in a similar manner. A first assay was performed with carrot as solid phase. There was an intermediate inhibition (30 %) between carrot and \(\text{rDau c1} \) in patient 1. The results indicated a considerable inhibition (nearly 100 %) between carrot and \(\text{rDau c1} \) in patient 2. No inhibition (0 %) was found between carrot and \(\text{rDau c1} \) in patient 3.

We performed other assay of specific IgE ELISA-inhibition between \(\text{Bet v1} \) and \(\text{rDau c1} \), employing \(\text{rDau c1} \) as solid phase, only in patients 1 and 2, because the serum of patient 3 did not reveal IgE binding to these allergens. The \(\text{rBet v1} \) showed less than 40 % of inhibition of \(\text{rDau c1} \) in patient 1. There was intermediate inhibition (a bit bigger than 40 %) between \(\text{rBet v1} \) and \(\text{rDau c1} \) in patient 2.

![Figure 1.](http://www.elsevier.es) IgE-Inmunoblotting in patients 1 (IgE 1), 2 (IgE 2) and 3 (IgE 3). Lane-1: Artemisia vulgaris. Lane-2: Apium graveolens. Lane-3: Daucus carota. Lane-4: Betula verrucosa. Lane-5: \(\text{rDau c1} \).

![Figure 2.](http://www.elsevier.es) A first assay was performed with carrot as solid phase. There was an intermediate inhibition (30 %) between carrot and \(\text{rDau c1} \) in patient 1. The results indicated a considerable inhibition (nearly 100 %) between carrot and \(\text{rDau c1} \) in patient 2. No inhibition (0 %) was found between carrot and \(\text{rDau c1} \) in patient 3.
DISCUSSION

Although carrot is frequently involved in food allergy and oral allergy syndrome, usually in association with other foods, it alone is rarely responsible for severe systemic reactions or asthma. In adults, food allergy to vegetables mainly develops secondarily as a consequence of sensitization to inhalant allergens on the basis of IgE cross-reactivity. Carrot allergy is well known to be highly associated with a sensitization to birch or mugwort pollen. However, some individuals may have allergy to carrot without it being associated with birch pollen allergy.

A number of carrot allergens have been characterised: Dau c 1, a 16 kDa (or 18 kDa) protein, a Bet v 1 homologue, a major allergen, with various Dau c 1 isoforms; Dau c 4, a profilin and Dau c Cycophilin, a 20 kDa protein. A 35 kDa protein related to Bet v 5, an isoallergene reductase-related protein, and a Bet v 6-related food allergen of approximately 30-35 kDa—a phenylcoumaran benzylic ether reductase (PCBER) —a plant defence protein, have been detected.

In the Midland of Spain, the sensitization to Betula verrucosa is uncommon. Grass pollen, Olea europaea pollen and weeds pollen are the most common allergens. Our patients were living in an area without birches.

In our work, the patient 1, with carrot induced occupational asthma, responded exclusively to carrot allergens. Pollen allergens seemed to be trivial. The initial sensitization seemed to be acquired from carrot itself. Moreover, Dau c 1 is not the principal allergen in patient 1. It is not able to inhibit more than 30 % of IgE binding to carrot. So, other allergens from carrot are probably implicated in the sensitization in this patient. Looking at the immunoblotting, there was a band with apparent molecular weight of 30 kd which could correspond to a phenylcoumaran benzylic ether reductase (PCBER) that looked like the predominant allergen. A previous report described a 34-year-old female cook who experienced allergic rhinoconjunctivitis and contact urticaria when she handled raw carrot. This patient, who had many similarities with our patient 1, had suffered anaphylactic episodes after accidental ingestion of raw carrots but tolerated boiled carrots. In this instance, monosensitisation to an 18kDa protein in carrot was reported.

Patient 2 showed other findings. Dau c 1 seemed to be the major allergen in this case, and it was able to inhibit 100 % IgE binding to carrot. In this case, the patient was not exposed to birch pollen. Her carrot sensitization could not be explained by his pollen allergy. We think that, like patient of case 1, this woman was sensitized directly from carrot allergens.

REFERENCES

1. Hoffmann-Sommergruber K, Derewy R, Cramer R, Breiteneder H, Ebner C, et al. IgE reactivity to Api g 1, a major celery allergen, in a Central European population is based on primary

Moreno-Ancillo A, et al.—ROLE OF DAU C 1 IN THREE DIFFERENT PATTERNS OF CARROT-INDUCED ASTHMA

Allergol et Immunopathol 2006;34(3):116-20