Routine HIV screening among blood donors in Buenos Aires (Argentina): Results from six years’ experience and report of a single window-period donation

Silvina Alejandra Gendler and María Susana Pascuccio

BACKGROUND. Blood donor HIV antibody detection has been mandatory in Argentina since 1991, and p24 antigen screening was recommended in 1997.

METHODS. A total of 30,132 consecutive donations were screened. Repeatedly reactive samples were tested by another screening test and/or by Western blot (WB) for HIV Ab, or by a neutralization assay for p24 Ag. RESULTS. Among the total, 0.3623% of samples were repeatedly reactive and 0.2084% were true HIV-infected donors. Only one donor tested nonreactive for HIV Ab, repeatedly reactive for p24 Ag, positive by neutralization assay, and seroconverted later. Samples with a signal-to-cutoff (S/CO) ratio ≥ 3.00 on routine HIV Ab testing were 100.0% positive by WB and/or repeatedly reactive by the second test. In samples with a S/CO ratio < 3.00, 11.1% were positive by WB and/or the majority were nonreactive by the second test. Among HIV-infected donors, 89.5% possessed risk factors (which had been denied previously), 56.5% were repeatedly reactive by other screening procedures and 88.6% were coinfected with other blood-transmissible viruses.

CONCLUSIONS. When the EIA S/CO ratio is ≥ 3.00, WB can be replaced by a second screening test. The pre-donation questionnaire should be improved to detect risk behavior in prospective donors. There was a high association between HIV and other blood-transmissible viruses.

Key words: HIV antibodies. HIV core protein p24. Blood donors. Risk factors.
At the beginning of this effort, most HIV-contaminated blood units were discarded by surrogate marker screening. In 1995, the first specific HIV type 1 (HIV-1) antibody test was licensed and blood donors then underwent double screening: a) an extensive pre-donation questionnaire to determine donor eligibility and b) post-donation HIV-1 antibody testing. The most commonly used method for detecting HIV antibodies (HIV Ab) has been enzyme-linked immunosorbent assay (ELISA). The performance of HIV screening assays has improved substantially over the years. First-generation HIV tests, based on HIV-1 whole-virus lysate, were able to detect only anti HIV-1 IgG. Subsequently, replacement of viral lysate antigens with recombinant proteins and synthetic peptides that detect anti HIV-1 and HIV-2 IgG (second-generation tests) increased the sensitivity of the assay, particularly in the early phase of seroconversion. Later, third-generation HIV Ac testing, and HIV-1 p24 assays, which detect the p24 core antigen produced by the HIV-1 gag gene, were developed and introduced in blood safety vigilance. When the HIV-1 antigen (p24 protein) test is implemented together with HIV-1/2/O antibody screening, the window period is lowered to 16-17 days. New combined antigen/antibody testing, the so-called fourth generation tests, are more sensitive than third generation antibody tests; nevertheless, their analytical sensitivity for p24 Ag (p24 Ag) is lower than that of single antigen tests. Nuclear acid amplification technology can improve the effectiveness of HIV detection and shorten the potentially infectious window to 10-12 days. However, this testing technology has an elevated cost and requires separate laboratory areas and highly trained personnel.

Detection of HIV Ab has been mandatory in Argentina since 1991, and the Asociación Argentina de Hemoterapia e Immunohematología (AAHI, Argentine Society for Haemotherapy and Immunohematology) recommended routine screening for p24 Ag in 1997, when p24 Ag tests were commercially available in our country. Use of the p24 Ag assay was implemented on 4 September 1997 to ensure a safer blood supply for our hospital patients who needed transfusions. The aim of this retrospective study is to describe the results obtained during double HIV screening (antibodies to HIV 1/2/O and p24 Ag) among our blood donors, and clinical correlations with those results, and to report the single case of HIV seroconversion detected over the time since screening has been practised.

Methods

Blood donors

All blood donors at our blood bank are unpaid; most of them are occasional directed donors who voluntarily donate blood for the transfusion needs of a relative or friend (allogeneic donors). When patients casional directed donors who voluntarily donate blood for the transplantation technology can improve the effectiveness of HIV screening has been practiced.

Core antigen produced by the HIV-1 gag gene, were devel-
oped and introduced in blood safety vigilance. When the
HIV-1 antigen (p24 protein) test is implemented together
with HIV-1/2/O antibody screening, the window period is
lowered to 16-17 days. New combined antigen/antibody
testing, the so-called fourth generation tests, are more
sensitive than third generation antibody tests; neverthe-
less, their analytical sensitivity for p24 Ag (p24 Ag) is lower
than that of single antigen tests. Nuclear acid amplifi-
cation technology can improve the effectiveness of HIV
detection and shorten the potentially infectious window
to 10-12 days. However, this testing technology has an el-
evated cost and requires separate laboratory areas and
highly trained personnel.

Detection of HIV Ab has been mandatory in Argentina
since 1991, and the Asociación Argentina de Hemoterapia
e Immunohematología (AAHI, Argentine Society for He-
motherapy and Immunohematology) recommended rou-
tine screening for p24 Ag in 1997, when p24 Ag tests were
commercially available in our country. Use of the p24 Ag
assay was implemented on 4 September 1997 to ensure a
safer blood supply for our hospital patients who needed
transfusions.

The aim of this retrospective study is to describe the re-

sults obtained during double HIV screening (antibodies
to HIV 1/2/O and p24 Ag) among our blood donors, and clini-
cal correlations with those results, and to report the single
case of HIV seroconversion detected over the time since
screening has been practised.

HIV antibodies and HIV-1 antigen: dual testing

algorithm

The routine blood donor testing algorithms for HIV Ab and HIV-1 Ag are shown in figure 1. Some additional considerations are mentioned:

– Samples from blood donors were always analyzed by two HIV screening methods (one for HIV Ab and the other for HIV-1 Ag). According to the 1997 revised UNAIDS-WHO recommendations, additional screening tests were used, in keeping with proposed WHO antibody testing strategy I was applied, and tests having the highest possible sensitivity were used to minimize the rate of false-negative results and to ensure transfusion safety. Because the fourth-generation HIV Ab tests we used have a low analytical sensitivity for p24 Ag, this assay was used only to detect HIV Ac.

– In accordance with CDC guidelines and the manufacturer’s instructions, any sample with an initially reactive result was retested in duplicate. If the result for either duplicate test was reactive, the specimen was reported as repeatedly reactive and the blood unit was discarded.

– When confirmatory assays could not be performed, one or two additional screening tests were used, depending on the WHO HIV antibody testing strategies II or III for diagnostic purposes, before notifying any repeatedly reactive HIV result to a blood donor.

– Western blot (WB) interpretation was done according WHO cri-
tera. When a sample showed an inadequate band pattern to meet the recommended criteria for WB positive status, it was considered indeterminate.

– Neutralization of viral antigens by specific antibody is an accept-
ed confirmatory method for p24 Ag repeatedly reactive samples. This neutralization assay was performed promptly, because of the po-
tential deterioration of HIV antigen during sample storage.

Samples

All fresh serum specimens were immediately examined on the same day as collection by screening tests. Initially reactive samples were kept at 4 °C and retested in duplicate within the three following days. Repeatedly reactive specimens were frozen at –20 °C and thawed once prior to confirmatory testing.

HIV screening methods

Age was defined as the age of the patient at the time of blood donation.

HIV antibody testing strategies II or III

for diagnostic purposes, be-
ne considered indeterminate. The neutralization assay was performed promptly, be-

Intermediate result

Some samples resulted repeatedly reactive (RR) and were frozen

Positive result

Sample was considered HIV-positive

HIV infected donor

When (a) a second sample was non-reactive, (b) the following sample showed low and constant S/CO rates without increasing during six months followship, or (c) other tests were all nonreactive:

In several cases, WB couldn’t be performed and the results obtained by other screening tests on initial or next following samples were taken into account

Two different circumstances could be possible: either an incomplete antibody response to HIV in specimens from infected persons or non-specific reactions in samples from uninfected persons. In both cases, donors were given serological and medical follow-up, especially if they had recent history of known or possible exposure to HIV

Negative result

False-positive result for routine screening test

HIV non-infected donor

Doctor was temporarily deferred: however follow-up HIV testing was performed if there were enough doubt about risk behaviour

False-positive result for routine screening test

HIV non-infected donor

Donor was temporarily deferred

Negative (non-neutralizing) or indeterminate (invalid) result

Donor was permanently deferred and a second blood sample was drawn 7-15 days later to detect possible seroconversion

If specimen was only RR for p24 Ag test

Sample was considered HIV-positive

A confirmatory commercial or in house assay was performed (see table 1 –p24 Antigen Neutralization test–)

Intermediate result

A more specific confirmatory assay was performed, for example: Western blot (WB), at a reference laboratory or by us (see table 1 –HIV Ab confirmatory tests–)

Negative (non-neutralizing) or indeterminate (invalid) result

And/or other screening tests with different immunologic principle (particle agglutination test, different microEIA or MEIA) were performed

If specimen resulted RR for HIV Ab too

Positive result

Sample was considered HIV-positive

HIV infected donor

Sample was considered p24 Ag positive

False-positive result for routine screening test

HIV non-infected donor

Donor was temporarily deferred

Some samples resulted repeatedly reactive (RR) and were frozen

A confirmatory commercial or in-house assay was performed (see table 1 –p24 Antigen screening assays and Microplate analysers–)

Positive result

Sample was considered HIV-positive

HIV infected donor

A confirmatory commercial or in-house assay was performed (see table 1 –p24 Antigen screening assays and Microplate analysers–)

Intermediate result

Blood samples were tested by a routine screening test (during the analysed period, different assays and equipment were used; see table 1 –HIV Ab screening assays and Microplate analysers–)

Negative result

False-positive result for routine screening test

HIV non-infected donor

Donor was temporarily deferred

Intermediate result

Blood samples were tested by a routine screening test (during the analysed period, different assays and equipment were used; see table 1 –HIV Ab screening assays and Microplate analysers–)

Positive result

Sample was considered HIV-positive

HIV infected donor

A confirmatory commercial or in-house assay was performed (see table 1 –p24 Antigen screening assays and Microplate analysers–)

Figure 1. Routine blood donor testing algorithm for HIV Ab and HIV-1 Ag.
When the number of samples was large enough, the test of hypothesis was performed using Fisher’s exact test, or by chi-square test with Yates’ correction, or by Fisher’s exact test, where applicable. Significance was set at a P-value of less than 0.05.

Results

Among the 30,132 blood donor samples screened, 108 (0.3621%) were repeatedly reactive donors (true-positive donors). Pre-test treatment with specific antibodies that neutralize HIV-1 p24 Ag was performed. The percentage of true-positive results was significantly higher (P = 0.0001) in HIV Ab repeatedly reactive donors (groups A and B: 61 of 30,132; 95% CI, 0.2072-0.2096) as compared to p24 Ag repeatedly reactive donors (groups A and B: 57.41%).

TABLE 1. Screening and confirmatory assays and analyzers used over the period assessed

<table>
<thead>
<tr>
<th>Trademark and manufacturer</th>
<th>Assay design</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV Ab screening assays</td>
<td>Passive particle agglutination test using gelatin particles sensitized with recombinant HIV-1 and HIV-2 antigens</td>
</tr>
<tr>
<td>SFD HIV 1/2 PA from Sanofi Pujocibro, Japan (previously) and Bio-Rad, France (later)</td>
<td>EIA based on a “sandwich” principle that detects anti-HIV-1/2 antibodies (3rd generation)</td>
</tr>
<tr>
<td>Abbott Recombinant HIV-1/HIV2 3rd Generation EIA (and plus version)</td>
<td>microELISA based on an indirect principle that detects anti-HIV-1/2 antibodies (2nd generation)</td>
</tr>
<tr>
<td>Genelavia HIV MIXT from Sanofi Diagnostics Pasteur, France</td>
<td>microELISA based on a “sandwich” principle that detects anti-HIV-1/2 antibodies (3rd generation)</td>
</tr>
<tr>
<td>Vironostika HIV MIXT from Organon Teknika, The Netherlands</td>
<td>microELISA based on a one-step “sandwich” principle that detects anti-HIV-1/2 antibodies (3rd generation)</td>
</tr>
<tr>
<td>Vironostika HIV Uni-Form II from Organon Teknika, The Netherlands</td>
<td>microELISA based on a one-step “sandwich” principle that detects anti-HIV-1/2 antibodies (3rd generation)</td>
</tr>
<tr>
<td>Vironostika HIV Uni-Form II plus O from Organon Teknika (previously) and Biomerieux (currently), The Netherlands</td>
<td>microELISA based on a one-step “sandwich” principle that detects anti-HIV-1/2 antibodies (3rd generation)</td>
</tr>
<tr>
<td>ORTHO HIV-1/1 HIV-2 Ab Capture ELISA Test System from Ortho-Clinical Diagnostics, Inc., USA</td>
<td>microELISA based on a one-step “sandwich” principle that detects anti-HIV-1/2/3 antibodies and p24 Ag (3rd generation)</td>
</tr>
<tr>
<td>Murex HIV-1.2.0 from Murex Biotech Limited, UK</td>
<td>microELISA based on a one-step “sandwich” principle that detects anti-HIV-1/2 antibodies and p24 Ag (4th generation)</td>
</tr>
<tr>
<td>Vironostika HIV Uni-Form II Ag/Ab from Organon Teknika (previously) and Biomerieux (currently), The Netherlands***</td>
<td>microELISA based on a one-step “sandwich” principle that detects anti-HIV-1/2 antibodies and p24 Ag (4th generation)</td>
</tr>
<tr>
<td>Coulter HIV-1 p24 Antigen Assay from Coulter Corporation, USA</td>
<td>microELISA based on “sandwich” principle for detection of the HIV-1 p24 core antigen</td>
</tr>
<tr>
<td>Murex HIV Antigen Mob from Murex Biotech Limited, UK</td>
<td>microELISA analyzer</td>
</tr>
<tr>
<td>Microplate analyzers</td>
<td></td>
</tr>
<tr>
<td>Tektine from Organon Teknika (previously) and Biomerieux (currently), The Netherlands</td>
<td>microELISA analyzer</td>
</tr>
<tr>
<td>Biomaster from Biokit, Spain</td>
<td>microELISA analyzer</td>
</tr>
<tr>
<td>HIV Ab confirmatory tests</td>
<td></td>
</tr>
<tr>
<td>HIV-1 Western Blot Kit from Organon Teknika Corporation, USA</td>
<td>Nitrocellulose strips with electroblotted antigenic proteins from partially purified inactivated HIV-1 viral particles (whole cell viral lysate) to detect anti-HIV-1 antibodies</td>
</tr>
<tr>
<td>New Lxt Blot 1 from Sanofi Diagnostics Pasteur, France</td>
<td>Nitrocellulose strips with electroblotted antigenic proteins from partially purified inactivated HIV-1 viral particles and specific HIV-2 synthetic peptide to detect anti-HIV-1/2 antibodies</td>
</tr>
<tr>
<td>HIV Blot 2.2 from Genelabs Diagnostics, Singapore</td>
<td></td>
</tr>
<tr>
<td>p24 Antigen Neutralization test</td>
<td>Pre-test treatment with specific antibodies that neutralize HIV-1 p24 Ag</td>
</tr>
<tr>
<td>Vironostika HIV-1 Antigen Neutralization System from Organon Teknika (previously) and Biomerieux (currently), The Netherlands</td>
<td></td>
</tr>
</tbody>
</table>

*No chronological order was followed (some kits were used several times during different periods).
**All assays were performed in accordance with the manufacturers’ instructions.
***The assay was used only to detect HIV Ab. A test for single p24 Ag detection was performed at the same time.

Results are expressed as mean ± SD and/or 95% CI, where applicable.

When the number of samples was large enough, the test of hypothesis was performed using gelatin particles sensitized with recombinant HIV-1 and HIV-2 antigens.

Vironostika HIV Ab screening assays and HIV non-infected donors (true-negative donors) were confirmed as true-positive, which yields 0.2084% (62 of 30,122; 95% CI, 0.2072-0.2096) of true HIV-infected donors.

The percentage of true-positive results was significantly higher (P = 0.0001) in HIV Ab repeatedly reactive donors (groups A and B: 61 of 30,132; 95% CI, 0.2072-0.2096) as compared to p24 Ag repeatedly reactive donors (groups A and B: 57.41%).

It was not possible to establish the date of the sexual event that triggered the infection. The donor showed evidence of seroconversion in a second sample 13 days after the donation (fig. 2 and table 3). It is known that the proportion of screening-test-reactive results that are positive by confirmatory tests increases as the screening-test-reactive average S/CO ratio increases. In our donor population, there were significant differences in the S/CO ratio (P < 0.0001) between EIA true-positive HIV Ab repeatedly reactive donors and false-positive donors (11.72 ± 4.28 vs. 3.00 ± 1.47, P < 0.001). The same was true among p24 Ag repeatedly reactive donors by EIA (11.3 ± 3.0 vs. 1.75 ± 1.2; P < 0.05). It is also to be expected that the proportion of screening-test-reactive results that are positive by confirmatory tests increases as the screening-test-reactive average S/CO ratio increases. In our donor population, there were significant differences in the S/CO ratio (P < 0.0001) between EIA true-positive HIV Ab repeatedly reactive donors and false-positive donors (11.3 ± 3.0 vs. 1.75 ± 1.2; P < 0.001) (groups B and C, table 2b). The proportion of HIV Ab repeatedly reactive donors by EIA that tested positive by WB was 11.1% and C, table 2b). The proportion of HIV Ab repeatedly reactive donors and false-positive donors (11.72 ± 4.28 vs. 1.36 ± 0.54; groups A and B, table 2b). The same was true among p24 Ag repeatedly reactive donors by EIA: (7.87 ± 7.71 vs. 1.55 ± 1.33; P < 0.0017) (groups A and B, table 2). The proportion of HIV Ab repeatedly reactive donors by EIA (7.87 ± 7.71 vs. 1.55 ± 1.33; P < 0.0017) (groups B and C, table 2b). The proportion of HIV Ab repeatedly reactive donors by EIA that tested positive by WB was 11.1% for samples with an average S/CO ratio < 3.0 and 100% for those with an average S/CO ratio > 3.0 (fig. 3). In addition, 31 of 85 (36.5%) HIV Ab repeatedly reactive samples were tested by a second screening test; another EIA, a microparticle enzyme immunoassay, or an agglutination test (table 4). All 13 samples with an S/CO ratio ≥ 3.0 (10.72 ± 3.84) on the first test were also reactive on the second test and positive by WB. However, the 18 samples that had an S/CO ratio < 3.0 (1.47 ± 0.58) with the routine screening test were nonreactive (15), reactive (1) or borderline (2) with the second test. All these donors were confirmed as HIV non-infected.

At the time of blood donation, all donors had denied high risk behaviors for HIV infection and, therefore, completed the donation process. Nevertheless, some of them were found to be repeatedly reactive for HIV Ab and/or p24 Ag, including one donor who self-deferred the was
found to be false-positive for HIV Ab). All the repeatedly reactive donors (n = 108) were requested by mail to return.

The true-positive donors (n = 62) were divided into three groups: 1) 17 donors (27.4%) who did not come to the appointment, six of whom had given a false address; 2) 21 donors (33.9%) for whom additional information could not be obtained because they decided to receive medical care outside of our hospital; and 3) 24 donors (38.7%) who returned and were referred to the Infectious Disease Service. After extensive lifestyle questioning, it was found that 89.5% of the HIV-infected donors who returned possessed risk factors for retroviral infection, including unprotected heterosexual (47.4%), homosexual (15.9%) and bisexual (15.9%) activity and intravenous drug use (10.5%). A high proportion of infected donors (70.0%) did not know their partner's HIV serostatus and only one infected donor admitted sexual activity with a risk partner.

The seroconverting donor, the only true-positive donor from group C (p24 Ag repeatedly reactive by EIA only),

Table 3. Follow-up of the single p24 Ag-reactive patient who later seroconverted

<table>
<thead>
<tr>
<th>Days from donation day</th>
<th>Sample N<sup>a</sup></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>p24 Ag EIA result (mIU/mL)</td>
<td>RR (3.80)</td>
<td>RR (4.98)</td>
<td>NR (0.68)</td>
</tr>
<tr>
<td></td>
<td>p24 Ag neutralization assay result, by (a) commercial and/or (b) in house method</td>
<td>positive (both methods were performed)</td>
<td>positive (only (b) was performed)</td>
<td>NR (0.34)</td>
</tr>
<tr>
<td></td>
<td>HIV Ab EIA result (mIU/mL)</td>
<td>RR (3.89)</td>
<td>RR (2.79)</td>
<td></td>
</tr>
<tr>
<td>HIV WB result</td>
<td>-</td>
<td>indeterminate</td>
<td>positive for HIV-1</td>
<td></td>
</tr>
<tr>
<td>HIV-1 RNA detection assay<sup>b</sup></td>
<td>positive</td>
<td>positive</td>
<td>positive</td>
<td></td>
</tr>
<tr>
<td>Medical follow-up</td>
<td>no symptoms</td>
<td>no symptoms</td>
<td>no symptoms</td>
<td></td>
</tr>
</tbody>
</table>

^aNR: nonreactive result (when EIA S/CO ratio of the sample is < 1.0).

^bp24 Ag was quantified using the same screening EIA test (a calibration curve was performed according to the manufacturer's instructions).

Not done.

Not performed by reverse transcription followed by polymerase chain reaction (RT-PCR); Nuclisens NASBA (Organon Teknika, The Netherlands).

Table 4. Results obtained with a second HIV Ab screening test in some of the repeatedly reactive samples tested with the routine method

<table>
<thead>
<tr>
<th>Samples confirmed as non HIV positive</th>
<th>Samples confirmed as HIV positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>S/CO ratio routine EIA</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>1.1</td>
</tr>
<tr>
<td>4</td>
<td>1.1</td>
</tr>
<tr>
<td>5</td>
<td>1.1</td>
</tr>
<tr>
<td>6</td>
<td>1.1</td>
</tr>
<tr>
<td>7</td>
<td>1.1</td>
</tr>
<tr>
<td>8</td>
<td>1.1</td>
</tr>
<tr>
<td>9</td>
<td>1.1</td>
</tr>
<tr>
<td>10</td>
<td>1.3</td>
</tr>
<tr>
<td>11</td>
<td>1.3</td>
</tr>
<tr>
<td>12</td>
<td>1.3</td>
</tr>
<tr>
<td>13</td>
<td>1.3</td>
</tr>
<tr>
<td>14</td>
<td>1.7</td>
</tr>
<tr>
<td>15</td>
<td>2.0</td>
</tr>
<tr>
<td>16</td>
<td>2.4</td>
</tr>
<tr>
<td>17</td>
<td>2.5</td>
</tr>
<tr>
<td>18</td>
<td>2.9</td>
</tr>
<tr>
<td>mean 1.47</td>
<td>6.58</td>
</tr>
<tr>
<td>SD 1.0-2.9</td>
<td></td>
</tr>
</tbody>
</table>
was a 29-year-old man who later admitted heterosexual promiscuity.

No statistically significant differences in average age were observed between HIV Ab and p24 Ag non-reactive donors and HIV Ab and/or p24 Ag repeatedly reactive donors (34.2 ± 11.2 vs. 34.5 ± 9.9 years; table 2c). However, between true-positive HIV Ab and/or p24 Ag donors and false-positive donors (32.8 ± 9.6 vs. 36.0 ± 11.3, a significant (although low) difference (P < .05) was found by TH.

A significantly smaller percentage of female donors was seen in the HIV Ab and/or p24 Ag repeatedly reactive group in comparison with non-reactive donors (17.59% vs. 25.47%) (P < .05). Similarly, the proportion of women was significantly lower (P < .05) in the true-positive groups as compared to the false-positive group (11.29% vs. 26.09%).

The proportion of women in the false-positive group was similar to that of the negative group (26.09% vs. 25.47%) (0.3623%), including HIV Ab and/or p24 Ag reactive donors. However, among the total repeatedly reactive donor population, only 7.7% were reactive for two or more serological markers of infection (coinfections). However, among the 62 true-positive HIV donors, 35 (56.5%) tested repeatedly reactive for other screening reactions (3 for syphilis; 1 for Chagas’ disease; 6 for anti Hbc; 2 for anti Hbs and HBsAg; 7 for anti Hbc and anti HCV; 6 for anti Hbc, anti HCV and anti HTLV I-II; 8 for anti HCV and 2 for anti HTLV I-II) and 43.5% were reactive only for HIV tests (fig. 4, part A). This proportion of coinfections was significantly higher (TH, P < .05) for HIV true-positive donors than for the overall reactive donors. Of 46 false-positive HIV donors, 8.7% were found to be reactive for two or more serological markers of infection (proportion similar to that of the overall infected donor population) whereas 91.3% showed reactivity (false) only for HIV serological markers (fig. 4, part B). Thirty-one of 35 (88.6%) HIV true-positive donors who presented coinfections were infected with other blood-transmissible viruses (HIV and/or HCV and/or HTLV).

Discussion

Our total rate of HIV repeatedly reactive donors (0.3623%), including HIV Ab and/or p24 Ag reactive donors, was similar to values reported by other centers in our city13 and Brazilian cities14,15, but was higher than values reported by other blood banks in Argentina and the rest of Latin America16-19. The rate of confirmed HIV-infected donors (0.2084%) was intermediate among other public and private Latin American blood donation centers13,17,18,20, but much higher than rates from other countries with a repeat donor population, such as the USA and France.21

Our data (80% of false-positive results among p24 Ag repeatedly reactive donors) are consistent with the concept that that most repeatedly reactive p24 Ag screening results in the blood donor population are expected to be false-positive or invalid.21,22 In contrast, most of the repeatedly reactive results in the HIV Ab assay were confirmed as positive (70.11%). These findings yield a specificity of 99.90% for p24 Ag and 99.91% for HIV Ab (the kits used report 100% sensitivity; hence all nonreactive samples were considered true negative). The specificity values obtained coincide with the values provided in the kit inserts and are compliant with the WHO minimum standards.21 Although these specificity values for screening methods are acceptable, we think it is desirable to improve this parameter in order to minimize unnecessary donor deferrals.

To confirm repeatedly reactive samples for HIV Ab screening tests, supplemental or confirmatory tests, such as WB, should be performed. One-third of our HIV Ab repeatedly reactive donors were false positive; thus, it is very important to confirm HIV infection by additional tests before reporting reactive results to the donor to avoid the psychological distress associated with a false-positive HIV result. Other blood banks have expressed similar considerations.14 Given the fact that confirmatory testing (such as WB) may sometimes be unavailable because of its high cost, and to minimize the number of specimens that require additional testing, we believe that in cases with an S/CO ratio ≥ 3.0 (or using another specific S/CO ratio established with a larger number of samples), WB can be replaced by a second screening test, in keeping with WHO recommendations.21 If a sample is reactive on both these tests, it is considered HIV Ab-positive without wasting time and money performing WB testing. However, samples with low S/CO ratio (< 3.0) must be tested by WB to

Figure 4. Additional reactivity from true (A) and false-positive (B) HIV Ab and/or p24 Ag donors.
define the true HIV status, as is recommended in the CDC algorithm for HCV.

Only one case of HIV seroconversion was detected among the 30,132 tested donors; that is, 3.3 cases per 100,000 donations. It has been estimated that one p24 Ag reactive/HIV Ab nonreactive donor will be present in every 88,000-175,000 donations in the Latin American replacement blood donor population; therefore, it is probable that we will have to wait several years to detect a second seroconversion case in our donor population. p24 Ag is usually detectable a mean of six days earlier than HIV Ab, so it can be inferred that the donor might have seroconverted between the 4th and 6th day after donation, when p24 Ag was detected. Other blood banks in Argentina have reported cases of p24 Ag true-positive donors who later seroconverted.25,26 These results support the policy of continuing with p24 Ag testing among blood donors, despite the fact that this antigen is only detectable during a short time.

Among the group of true-positive HIV donors, a large number did not return after the mail citation or lied about their address. The low percentage of positive HIV donors that returned is similar to that observed by others.14 It may be that the donors who did not return knew about or suspected their positive serological status and, nevertheless, came to the blood bank because of pressure by their family or work partners. Another possibility is that these individuals used the donation opportunity to obtain free HIV testing, which in our setting is only prescribed after a medical interview (these individuals may not have wanted a physician consultation).15 Most of our infected donors were young men practicing high-risk behavior (unprotected sex activity and intravenous drug use), as has been reported by other blood banks and infectious disease centers.17,20,28,29 It is known that donors generally do not reveal their risk factors during the interview.30

There was no clear demographic profile to distinguish between repeatedly reactive or infective donors and nonreactive ones. Furthermore, there were no significant differences in the mean age between nonreactive and repeatedly reactive donors for both HIV Ab and p24 Ag testing; however, among repeatedly reactive donors there was a small age difference (P < 0.1) between true- (younger) and false-positive donors.

A high association was found between HIV infection and other diseases, particularly blood-transmitted infections (coinfection with other blood-transmissible viruses was common). Similar coinfection patterns have been reported by other blood banks.27,29-31 and health centers.19,20 In contrast, coinfection was rare among our HIV-negative donors; also, in keeping with data fromday 27, 31, and work centers.19,20 It is clear that a HIV Ab and p24 Ag screening by improved methods and kits, more rigorous donor selection, and an increase in the proportion of voluntary and repeat donors versus replacement donors is necessary to improve transfusion safety. However, there still remains a small but significant transfusion risk for HIV and other viral agents. To reduce this residual risk, progressive implementation of nucleic acid amplification for HIV screening in our blood bank should be done as soon as possible to minimize the serological diagnostic window of recent HIV infection and reduce the residual transfusion-transmissible infection risk. Several publications have reported the benefits of this new technology in blood donor screening, in addition to serological testing11,12,20-37. However, before introducing these techniques, associated issues must be resolved, such as the higher HIV screening cost per blood unit, and the need for separate laboratory areas and highly trained personnel for this purpose. A clear public health policy in favor of implementing nucleic acid amplification techniques in blood banks would be an important advance to achieve this goal.

Acknowledgements
The authors thank Dr. Luisa Correas and (head of the Hemotherapy and Immunohematology Unit, Juan A. Fernandez Hospital, Government of Buenos Aires City) for her kind cooperation and Dr. Pedro Cahn, Dr. Héctor Fierro and Lic. Florencia Amado (Infectious Disease Unit, Juan A. Fernandez Hospital, Buenos Aires) for clinical data collection and critical review of our manuscript, as well as Dr. Roxana Livellara (Molecular Biology Laboratory, Italian Hospital, Buenos Aires) who performed the molecular study of our single HIV pro-seroconversion donor.

Contributions
The authors contributed equally during the preparation of this paper and the order of appearance of the names does not reflect differences in amount of work put into the writing of manuscript.

Disclosures
Conflict of interest: none.

Redundant publications: no substantial overlapping with previous papers.

References