Prevalence of symptoms of asthma, rhinitis, and atopic eczema among adolescents living in urban and rural areas in different regions of Brazil

ABSTRACT

Background: In Brazil, studies evaluating the prevalence of asthma and allergic diseases among children living in rural area compared to urban area are rare. Some authors identified as risk factors for higher prevalence of current wheezing to have a family history of asthma, to have contact with pets, and being student in an urban school. The International Study of Asthma and Allergies in Childhood (ISAAC) phase 3 has shown higher prevalence of wheezing, nasal symptoms and cutaneous rash in the last 12 months in centers from Northern (N) and Northeastern (NE) regions of Brazil.

Objective: To evaluate if adolescents with similar genetic background, living in a rural area are protected against the development of symptoms of asthma, rhinitis, and atopic eczema when compared to those living in an urban area in the same region of the country.

Subjects and Method: Adolescents (13-14 year-old) living in Caruaru (Pernambuco) and in Santa Maria (Rio Grande do Sul) were enrolled in this study (2002-2003). The adolescents filled in the ISAAC written questionnaire (WQ), previously translated and validated to the Brazilian culture (30-32). Data obtained were transcribed manually into a database (Epi-Info) supplied by ISAAC’s coordinators and were statistically analyzed by the SSPS-12 software.

Results: The prevalence of asthma related symptoms were higher among those adolescents living in the urban centers in comparison to the rural ones. These differences were significant for wheezy ever, wheezy in the last 12 months, asthma ever, and wheezy with exercise in Caruaru and for wheezy ever and asthma ever, in Santa Maria. Comparing urban areas, the prevalence of asthma related symptoms in Caruaru was higher than in Santa Maria, except for wheezy ever and wheezy with exercise. The opposite was observed comparing rural areas: the prevalence of asthma (except for nocturnal cough) was higher in Santa Maria despite lesser severity of symptoms in this city.

INTRODUCTION

Charles Blackley, more than 100 years ago, was the first to notice that hay fever was remarkably rare
in farming families. Since then an increasing prevalence of allergic diseases has been reported, and in a simple way, has been related to urbanization and western lifestyle.

Some of the factors being investigated as protective against the onset of asthma and allergic diseases include early exposure to infectious agents and/or endotoxins, to be born and growing up in a rural area with great number of children, to have received low amounts of antibiotics, to have been long-term breast fed, to have been long-term breast fed, to have had a family history of asthma, to have had a family history of asthma, to have received a special diet (fresh fruits and vegetables, long-chain polyunsaturated fatty acids, and vitamin A) during the first year of life.

Growing up in farms, mainly in those engaged in cattle breeding, poultry or animal production has been linked to a lower prevalence of atopic sensitization and hay fever. However, epidemiological studies have shown conflicting evidences about the lower risk of atopic diseases in children living in rural areas compared to those living in urban areas.

Remes et al, evaluating adolescents, demonstrated a reduced risk of questionnaire-reported hay fever in children living in farms with livestock. In another study, also in Finland, Kilpelainen et al observed a slightly reduced risk of asthma among farmer’s children. When we interpret the results of these trials it is necessary to know that farms around the world certainly do not have the same scale and kind of operation. This would be responsible in part for the discrepancy observed among these studies. Downs et al, keeping this doubt in mind, have studied the prevalence of allergic diseases in two Australian rural towns with different farming activities: mixed and crop. They have observed a lower risk of atopy among those children that were born and lived at least 1 year in farms with mixed activity (livestock and crop).

In Brazil, studies evaluating the prevalence of asthma and allergic diseases among children living in rural area compared to urban area are rare. Maia et al evaluated the prevalence of asthma and related symptoms among adolescents living in Montes Claros, a small city in the countryside of the state of Minas Gerais, Southeastern of Brazil. They identified as risk factors for higher prevalence of current wheezing to have a family history of asthma, to have contact with pets, and being student in an urban school.

The International Study of Asthma and Allergies in Childhood (ISAAC) phase 3 has shown higher prevalence of wheezing, nasal symptoms and cutaneous rash in the last 12 months in centers from Northern (N) and Northeastern (NE) regions of Brazil. As Brazil was colonized by Portuguese, invaded by several other nations and received in the last century millions of immigrants, Brazilian people hasn’t a characteristic genetic pattern. This is one of the main difficulties for comparison between different centers from different regions of the country.

The aim of this study was to evaluate if adolescents with similar genetic background, living in a rural area are protected against the development of symptoms of asthma, rhinitis, and atopic eczema when compared to those living in an urban area in the same region of the country.

SUBJECTS AND METHODS:

Adolescents (13-14 year-old) living in Caruaru (state of Pernambuco) and in Santa Maria (state of Rio Grande do Sul) were enrolled in this study (2002-2003). They were selected as standardized by ISAAC protocol. Among those who had attended public and private schools localized in these cities. Information regarding the number of schools and students in each city was obtained from their respective City Education Secretaries official records. According to the place they were living, adolescents were divided into two groups: urban (U) and rural (R).

Caruaru and Santa Maria are small countryside cities with different climate and socioeconomic status. Caruaru is in the NE region of Brazil, has 253,834 inhabitants (85.6 % urban) living in a total area of 928.08 Km². Its latitude is 8° 17 ″ 00 ″ S, its longitude is 35° 58 ″ 34 ″ W. Gr, and its altitude is 955m. Climate is hot semiarid with a mean annual temperature of 24 °C. Santa Maria is in the S region, has 243,396 inhabitants (84.7 % urban) living in a total area of 1,823.1 Km². Its latitude is 29° 68 ″ 17 ″ S, its longitude is 53° 09 ″ 69 ″ W. Gr, and its altitude is 112 m. The climate in Santa Maria is subtropical, seasons are better defined, and the mean annual temperature is 19.2 °C.

According to the Brazilian Institute of Geography and Statistics (IBGE) an urban area was defined as those corresponding to towns (municipal headquarters), villages (county headquarters) or isolated urban areas, and a rural area was defined as all area out of the limits of an urban area.

Considerations about socioeconomic status were based on the state infant mortality index (number of dead children younger than 1 year old per 1,000 live births) and on the city Gross Domestic Product (GDP). During 2003, the infant mortality index in Pernambuco was 60.46 and the Caruaru’s GDP was R$1,042,163. The infant mortality in the state of Rio Grande do Sul was 18.99 and Santa Maria’s GDP was R$1,054,391 (US$1.00 = 3.00 Brazilian Reais [R] in 2003).
Solé D et al.—ALLERGIC DISEASES IN RURAL AND URBAN AREAS OF BRAZIL

The percentage of population in the age period of 13 to 14 years in the states of Rio Grande do Sul and Pernambuco was 4.0 % and 4.2 % of the total population living in Southern and Northern regions, respectively. Expecting to have at a difference of at least 6 % in the prevalence of current asthma (wheezy in the last 12 months) between adolescents living in rural and urban areas [mean prevalence of current asthma for wheezy ever (wheezy ever and wheezy with exercise) was 20 % (ISAAC phase II), with a test power of 80 %, and alpha risk of 5 %, the total number of evaluated adolescents would be 351.

In Caruaru the selection of adolescents was based on the distribution of the whole population: rural (14 %) and urban (86 %) inhabitants. Of the 3,026 adolescents enrolled, 2,674 (88.3 %) and 352 (11.7 %) were U and R, respectively. In Santa Maria participated 3,066 U adolescents and 3,057 R adolescents from 10 small cities in the neighborhood of Santa Maria.

After sample definition, the adolescents filled in the ISAAC written questionnaire (WQ), previously translated and validated to the Brazilian culture. The WQ was fulfilled in the classroom under the supervision of the researcher. Data obtained were transcribed manually into a database (Epi-Info) supplied by ISAAC's coordinators and were statistically analyzed by the SSPS-12 software. The frequency of affirmative answers to each question was considered according to the city evaluated. The comparison between U and R, in each city, were analyzed by the Chi-square test and the results were expressed as Odds ratio (OR) with 95 % confidence intervals (95 % CI).

The level of rejection of null hypothesis was 5 %. The study was approved by the Ethical Committee of Federal University of Pernambuco and Federal University of Santa Maria. A sign informed consent was obtained by all adolescents' parents.

RESULTS

In general the prevalence of asthma related symptoms were higher among those adolescents living in the urban centers in comparison to the rural ones (table I). These differences were significant for wheezy ever, wheezy in the last 12 months, asthma ever, and wheezy with exercise in Caruaru and for wheezy ever and asthma ever, in Santa Maria. Comparing urban areas, the prevalence of asthma related symptoms in Caruaru was higher than in Santa Maria. Comparing urban areas, the prevalence of asthma related symptoms in Caruaru was higher than in Santa Maria. Comparing urban areas, the prevalence of asthma related symptoms in Caruaru was higher than in Santa Maria. Comparing urban areas, the prevalence of asthma related symptoms in Caruaru was higher than in Santa Maria.

Except for the prevalence of nasal symptoms interfering with daily activities, all rhinitis related symptoms were significantly higher among adolescents living in urban area, in both cities (table II). As observed with asthma symptoms, the prevalence of rhinitis related symptoms was higher among U Caruaru adolescents in comparison to U Santa Maria adolescents. In the other hand, and contrary to that observed with asthma, the prevalence of rhinitis and its symptoms was higher among R Caruaru adolescents in comparison to R Santa Maria adolescents.

Table III shows data from ISAAC's eczema core WQ. In Caruaru there were not significant differences in the prevalence of eczema related symptoms between urban and rural adolescents. In Santa Maria, except for the prevalence of itchy rash in the last 12 months, all eczema symptoms were significantly more frequent in rural than in urban area. In Caruaru the prevalence of eczema related symptoms were higher than those in Santa Maria (except for the severity of symptoms – kept awake at night in the last 12 months), considering both urban and rural areas.

DISCUSSION

Brazil is a continental country, whose total area of 8.5 million square kilometers is cut in N by the Equator line and in SE by the Tropic of Capricorn. Secondary to its colonization, a period of slavery (mainly in NE and SE regions) and immigration in the last century (mainly to S and SE regions), Brazilian population has a high degree of miscegenation that explains the high Brazilian people heterogeneity characterizing us as a genetic cauldron. So, genetic studies or comparisons between Brazilian people living in different parts of the country are difficult. Trying to minimize bias we decided to study people living in rural and urban areas in the same neighborhood, in different regions of Brazil.

Sometimes, even studying people living in the same area, it is important to know that they have apparently the same genetic background. In a recent study, Soares et al have evaluated the prevalence of asthma and related symptoms applying ISAAC WQ among Indians living in a village near of the city of Maceió – the capital of Alagoas state (NE region of Brazil).

These individuals live in conditions very similar of those their ancestors used to live, in extreme poverty, low level of sanitation without potable water and sewer, high level of illiteracy, high frequency of helmintiasis and a mean income lower than US$50. In comparison to children living in Maceió, the prevalence of current asthma was lower, for both...
Table I

<table>
<thead>
<tr>
<th>Question</th>
<th>Caruaru</th>
<th>Santa Maria</th>
<th>OR (95% CI)</th>
<th>Urban</th>
<th>Rural</th>
<th>OR (95% CI)</th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheezy ever</td>
<td>32.6%</td>
<td>23.0%</td>
<td>1.62 (1.25-2.10)*</td>
<td>42.1%</td>
<td>37.4%</td>
<td>1.10 (0.96-1.31)*</td>
<td>3.066</td>
<td>3.057</td>
</tr>
<tr>
<td>Wheezy last 12 months</td>
<td>18.6%</td>
<td>12.5%</td>
<td>1.60 (1.18-2.21)*</td>
<td>19.2%</td>
<td>13.1%</td>
<td>1.45 (0.97-2.18)</td>
<td>1.973</td>
<td>1.203</td>
</tr>
<tr>
<td>More than 4 attacks last 12 months</td>
<td>3.1%</td>
<td>2.5%</td>
<td>1.22 (0.61-2.45)</td>
<td>3.8%</td>
<td>4.1%</td>
<td>0.95 (0.72-1.23)</td>
<td>0.957</td>
<td>1.203</td>
</tr>
<tr>
<td>Sleep disturbance last 12 months</td>
<td>11.9%</td>
<td>12.2%</td>
<td>0.97 (0.69-1.36)</td>
<td>3.8%</td>
<td>3.8%</td>
<td>1.01 (0.77-1.31)</td>
<td>0.773</td>
<td>1.203</td>
</tr>
<tr>
<td>Speech problem last 12 months</td>
<td>5.0%</td>
<td>4.8%</td>
<td>1.04 (0.62-1.74)</td>
<td>3.8%</td>
<td>3.8%</td>
<td>1.01 (0.77-1.31)</td>
<td>0.773</td>
<td>1.203</td>
</tr>
<tr>
<td>Asthma ever</td>
<td>21.1%</td>
<td>8.5%</td>
<td>2.87 (1.95-4.20)*</td>
<td>14.9%</td>
<td>11.1%</td>
<td>1.40 (1.21-1.62)*</td>
<td>1.621</td>
<td>1.203</td>
</tr>
<tr>
<td>Wheeze with exercise last 12 months</td>
<td>18.2%</td>
<td>12.8%</td>
<td>1.52 (1.15-2.10)*</td>
<td>19.0%</td>
<td>18.8%</td>
<td>1.01 (0.89-1.15)</td>
<td>0.895</td>
<td>1.153</td>
</tr>
<tr>
<td>Cough at night last 12 months</td>
<td>39.2%</td>
<td>35.8%</td>
<td>1.16 (0.92-1.46)</td>
<td>32.4%</td>
<td>32.6%</td>
<td>0.99 (0.89-1.10)</td>
<td>0.891</td>
<td>1.103</td>
</tr>
</tbody>
</table>

*p < 0.05

Table II

<table>
<thead>
<tr>
<th>Question</th>
<th>Caruaru</th>
<th>Santa Maria</th>
<th>OR (95% CI)</th>
<th>Urban</th>
<th>Rural</th>
<th>OR (95% CI)</th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sneezing, runny or blocked nose ever</td>
<td>39.2%</td>
<td>19.6%</td>
<td>2.60 (1.98-3.42)*</td>
<td>17.1%</td>
<td>13.1%</td>
<td>1.33 (1.09-1.63)*</td>
<td>1.095</td>
<td>1.623</td>
</tr>
<tr>
<td>Sneezing, runny or blocked nose ever in the last 12 months</td>
<td>27.4%</td>
<td>12.5%</td>
<td>2.61 (1.88-3.63)*</td>
<td>12.2%</td>
<td>10.2%</td>
<td>1.21 (1.04-1.42)*</td>
<td>1.041</td>
<td>1.422</td>
</tr>
<tr>
<td>Nose problem with itchy, watery eyes in the last 12 months</td>
<td>16.3%</td>
<td>8.2%</td>
<td>2.17 (1.48-3.22)*</td>
<td>6.6%</td>
<td>4.7%</td>
<td>1.41 (1.13-1.76)*</td>
<td>1.131</td>
<td>1.762</td>
</tr>
<tr>
<td>Interference with daily activities</td>
<td>9.2%</td>
<td>10.8%</td>
<td>0.84 (0.59-1.20)</td>
<td>7.9%</td>
<td>8.2%</td>
<td>0.97 (0.80-1.18)</td>
<td>0.801</td>
<td>1.183</td>
</tr>
<tr>
<td>Rhinitis ever</td>
<td>22.7%</td>
<td>13.1%</td>
<td>1.95 (1.41-2.70)*</td>
<td>17.7%</td>
<td>10.8%</td>
<td>1.78 (1.53-2.08)*</td>
<td>1.532</td>
<td>2.083</td>
</tr>
</tbody>
</table>

*p < 0.05

Table III

<table>
<thead>
<tr>
<th>Question</th>
<th>Caruaru</th>
<th>Santa Maria</th>
<th>OR (95% CI)</th>
<th>Urban</th>
<th>Rural</th>
<th>OR (95% CI)</th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ever had an itchy rash that was coming and going for at least 6 months</td>
<td>16.3%</td>
<td>17.3%</td>
<td>0.93 (0.70-1.25)</td>
<td>10.5%</td>
<td>12.6%</td>
<td>0.81 (0.70-0.95)*</td>
<td>0.709</td>
<td>0.952</td>
</tr>
<tr>
<td>Itchy rash in the last 12 months</td>
<td>10.4%</td>
<td>9.4%</td>
<td>1.12 (0.77-1.64)</td>
<td>6.8%</td>
<td>7.9%</td>
<td>0.86 (0.70-1.09)</td>
<td>0.701</td>
<td>1.093</td>
</tr>
<tr>
<td>Itchy rash in characteristic places</td>
<td>6.4%</td>
<td>7.4%</td>
<td>0.86 (0.56-1.32)</td>
<td>3.6%</td>
<td>4.8%</td>
<td>0.74 (0.57-0.99)</td>
<td>0.570</td>
<td>0.992</td>
</tr>
<tr>
<td>Itchy rash that cleared in the last 12 months</td>
<td>10.2%</td>
<td>10.5%</td>
<td>0.97 (0.67-1.39)</td>
<td>5.5%</td>
<td>7.8%</td>
<td>0.68 (0.56-0.84)*</td>
<td>0.568</td>
<td>0.841</td>
</tr>
<tr>
<td>Kept awake at night by this itchy rash in the last 12 months</td>
<td>5.8%</td>
<td>7.1%</td>
<td>0.92 (0.53-1.57)</td>
<td>8.7%</td>
<td>11.6%</td>
<td>0.73 (0.51-1.06)*</td>
<td>0.510</td>
<td>1.062</td>
</tr>
<tr>
<td>Ever had eczema</td>
<td>14.1%</td>
<td>14.2%</td>
<td>0.99 (0.72-1.36)</td>
<td>9.8%</td>
<td>11.8%</td>
<td>0.81 (0.69-0.98)*</td>
<td>0.698</td>
<td>0.981</td>
</tr>
</tbody>
</table>

*p < 0.05
age periods evaluated: six times among children aged 6-7 years (4% x 24%) and less among adolescents aged 13-14 years (10% x 14.7%)23,25.

The first impression we have when analyzing these data is that the Hygiene Hypothesis could have played a role in the results of prevalence of asthma among these Indian children population.

However, it is important to point out that children living in the city of Maceió and these Indians are genetically different once the level of miscegenation among Indians almost does not exist24. So we could not make any speculation about the role of Hygiene Hypothesis in the data observed. Because of this we decided to study population been apparently of the same genetic background, living in different places in the same region of the country.

Although in this study, the prevalence of helmintasis was not appraised, Nascimento Silva did not observe any difference in the prevalence of asthma between low socio-economic children with or without ascarisiasis, living in Campina Grande, a city located near to Caruaru26.

An inverse relationship between mean annual outdoor temperature and humidity and the prevalence of asthma, allergic rhinoconjunctivitis, and atopic eczema among children from 146 ISAAC’s phase I participant centers was documented: high temperature and humidity were associated to lower prevalence27. In this study we observed the opposite.

Despite climate and cultural differences between people living in the NE and S of Brazil, the rural way of life in both are quite similar. In general, farm’s houses and with an increased risk of non-atopic wheeze, reduced risk of allergic sensitization and eczema, increased endotoxin exposure was associated with farm exposures associated to health outcomes independently of the same region of the country.

In general, we observed a tendency for higher values of prevalence of asthma and rhinitis but not eczema related symptoms among those adolescents living in urban area, as in Caruaru as in Santa Maria. Our data confirms that living in a rural area is associated to a decrease in the prevalence of symptoms related to asthma and allergic rhiinitis among Brazilian children from two different regions of the country.

REFERENCES

