Ultrasound-guided technique for central venous catheterization has been a widely developed procedure during the last decade. Nowadays, it is a common technique in the anaesthesiologist’s clinical practice. During the last six years, we usually have carried out central venous catheterization using the ultrasound-guided technique in our hospital. Moreover, we use to check correct intravenous placement of the catheter by using the ‘‘real-time’’ or ‘‘dynamic’’ ultrasound technique. We think this is an important part of the procedure sometimes forgotten by the anaesthetist. This simple manoeuvre has some benefits: to verify the intravenous placement of the catheter, to confirm if the catheter remains fixed to the vessel wall and also to check the potential injury and haematoma caused to the vein. This manoeuvre does not require change in the position of the probe used for cannulation, the catheter can be verified when both, long or short axis, approaches are employed. If superficial vein cannulation is performed (femoral, internal jugular), an ‘‘out of plane’’ approach using the short

* Corresponding author.
E-mail address: jmaria.belenab@salud.madrid.org
(J.M. Beleña).

http://dx.doi.org/10.1016/j.redar.2014.11.002
0034-9356/© 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España, S.L.U. All rights reserved.

Figure 1 Long axis view of the subclavian vein and surrounding structures in the right infraclavicular fossa. Triple lumen catheter is shown, differentiating between the 3 separate lumen (arrow heads). SV, subclavian vein; SCT, subcutaneous cellular tissue; PM, pectoralis major; pm, pectoralis minor.
axis is recommended (Figs. 2–3), although long axis position of the probe is also useful for intravenous placement of the catheter. In case of deeper vein catheterization (subclavian, axillary), ''in plane'' approach using the long axis is more commonly suggested (Fig. 1) and the short axis position of the probe has poor results in order to confirm the catheter’s position.

In addition, ''real-time'' ultrasound correct catheter placement confirmation technique is recommended by the main international guidelines of ultrasound vascular access. These guidelines propose this manoeuvre to ensure appropriate placement of the catheter and to assess for possible complications.

We conclude that real-time ultrasound detection of correct intravenous placement of central venous catheters after ultrasound cannulation is a simple, effective and recommended method to verify the success of the ultrasound-guided technique, as well as a good practice to assess for potential complications.