Streptococcus pneumoniae virulence factors and their clinical impact: an update

Maria del Mar García-Suárez, Fernando Vázquez and Francisco J. Méndez

Streptococcus pneumoniae remain very high worldwide. The virulence of this bacterium is largely dependent on its polysaccharide capsule, which is quite heterogeneous and represents a serious obstacle for designing effective vaccines. However, it has been demonstrated that numerous protein virulence factors are involved in the pathogenesis of pneumococcal disease. An important related finding from experimental animal models is that non-capsulated strains of pneumococci are protective against capsulated ones. Hence, new vaccine designs are focused on the surface proteins (e.g., PspA and PspC) and on the cytolysin, pneumolysin. Moreover, several virulence factors have potential value for pneumococcal diagnosis by urinalysis. In this paper, we review the virulence factors involved in bacteria-host interactions, and the new developments in vaccines and diagnostic methods.

Key words: Streptococcus pneumoniae. Virulence factors. Vaccines. Diagnosis.

Introduction

In humans, Streptococcus pneumoniae typically colonizes the nasopharynx asymptomatically. The innate and adaptive immune system generally prevents colonization from progressing to disease. However, alterations of the host-pathogen homeostasis is associated with life-threatening, invasive diseases such as meningitis, septicemia, and pneumonia. Pneumococcus is also the leading cause of acute otitis media and sinusitis. Pneumococcal infections continue to be highly prevalent all over the world. Pneumococcus-related morbidity and mortality remains high, particularly in developing countries. In Spain, the incidence of invasive pneumococcal infections in children ≤ 2 years was 96 in 100,000. Illness rates increase in the elderly and in patients with predisposing factors, particularly AIDS. Although resistance to antibiotics is a problem worldwide, there is some evidence that it can be reduced by decreasing the use of these agents. The 23-valent polysaccharide vaccine is scantily immunogenic in high-risk groups and in children under the age of two. The 7-valent conjugate pneumococcal vaccine is more effective in this latter group. In developing countries, although the efficacy vaccination is lower in HIV-infected when compared with uninfected children, a substantial proportion of children will be protected. New 9- and 11-valent conjugate vaccines that provide more optimal serotype coverage are currently undergoing clinical trials. At present, conjugate vaccines are too expensive for developing countries. The fact that standard vaccination is incapable of changing the frequency of carriage of drug-resistant strains is of concern; furthermore, the initially dominant vaccine serotypes can be replaced by serotypes not covered by the vaccine. Higher rates of S. pneumoniae-related acute otitis media have been reported in children following vaccination. For all these reasons, the development of new and improved diagnostic tests and therapies to combat pneumococcal disease are necessary.
Pathogenicity and new vaccine development

The polysaccharide capsule has been considered the primary virulence factor of *S. pneumoniae* and is a major determinant in antibody accessibility to surface antigens. The pneumococcal capsule has a modular structure which facilitates the exchange of specific genes between serotypes. The quorum-sensing system, which is a chemically-mediated alert, exists in many bacteria and help them to monitor their population densities, genetic transformation, and regulate several cellular functions. Inhibiting this cell-to-cell communication may provide a means of treating pneumococcal infections. The phenomenon of capsular switching is seen in capsular types isolated from invasive disease, as well as in serogroups carried in the human nasopharynx. The potential replacement of most common serotypes is of great clinical importance (especially when it takes place between antibiotic-resistant strains) and has implications for long-term efficacy of conjugate pneumococcal vaccines. Each serotype typically includes a number of genetically divergent clones with a different invasive potential. Depending on the site of infection the combination of capsule type and genetic background is important in determining virulence. The pneumococcal intra-strain phenotype variants (opaque and transparent) are evident in colonies growing in solid transparent media or as TSA, and are associated with both virulence and capsule expression. The transparent phenotype has less capsular polysaccharide, which exposes adhesive molecules; hence, the pathogen is able to bind closely to epithelial cells. In contrast, the opaque phenotype is more virulent and common in systemic infections. Both phenotypic variants have recently been detected in nasal mucosal tissues. The opaque pneumococci probably penetrate into the mucosa, while the transparent phenotype has less capsular polysaccharide, which exposes adhesive molecules; hence, the pathogen is able to bind closely to epithelial cells. In contrast, the opaque phenotype is more virulent and common in systemic infections.
mococcal surface protein A (PspA) displays high-quality protection in animal models and is immunogenic in humans. This protein has a high polymorphism attributable to immunological selection because it is readily accessible to antibodies. In contrast, pneumolysin (PLY) is a highly conserved antigen capable of stimulating protective immunity and is an excellent vaccine candidate. It is likely that any future vaccine will turn out to be a combination of pneumococcal antigens generated by recombinant proteins that display the highest protective immunity and are common to all pneumococcal strains.

Carriage and immunity

The colonization of mucosal surfaces in the human respiratory tract is a dynamic process in which bacteria are acquired, eliminated, and reacquired many times over the course of a lifetime. In the nasopharynx, genetic exchange takes place by means of processes such as transformation with foreign DNA, bacterial intra- and inter-species conjugation, and phage transduction. In fact, the replacement of strains susceptible to antimicrobial agents by resistant ones is considered to occur during carriage and fostered by widespread and excessive use of antibiotics. Asymptomatic carriers comprise the reservoir of S. pneumoniae in humans; consequently, carriage rates must be lowered and by that, the incidence of pneumococcal infections should be decreased. Natural immunity to S. pneumoniae is thought to be induced by exposure to pneumococci or cross-reactive antigens and is initiated upon recognition of conserved pathogen-associated molecular patterns by various host cells expressing pattern recognition receptors. Recognition of bacterial components by the innate immune system, more specifically the interaction of bacterial components with Toll-like receptors (TLRs) has been recognized as an effective method by which to protect the host against several pathogens. TLRs are a family of 12 types of transmembrane proteins that recognize pathogens and are expressed on various immune cells including macrophages, dendritic cells, B cells, specific types of T cells, and even on nonimmune cells such as fibroblasts and epithelial cells. Phagocyte activation by inflammatory cytokines and apoptosis of infected phagocytes and other cells play an important role in clearing the pathogens.

Recent findings have demonstrated differential and specific mucosal, humoral, and T helper cell cytokine responses to PsaA, PspA, pneumococcal surface protein C (PspC), and PLY during pneumococcal carriage. In addition to systemic immunity, mucosal immunity may also play an important role in local protection against pneumococcal carriage and in preventing invasive infection. Mucosal immunization of mice with PsaA is known to be highly protective against pneumococcal carriage.

Figure 1. Mold of pneumococcal invasion into bronchoalveolar epithelium and inflammatory changes induced by virulence factors.
other hand, acquired immunity to pneumococcus has long been assumed to depend on the presence of anticapsular antibodies. However, the age-specific incidence of pneumococcal disease in humans declines simultaneously with and parallel to a wide range of serotypes, long before natural acquisition of anticapsular antibodies, which suggests a common and probably capsular serotype-independent mechanism of protection. Additionally, intranasal administration of unencapsulated pneumococcal whole-cell vaccine in mice prevents colonization by pneumococci of various capsular serotypes, supporting the possibility that other components of the immune response, independently of anticapsular antibodies, play an important role in this process. In fact, recent studies reveal that protection against pneumococcal colonization is CD4 T cell-dependent and is possibly acquired independently of antibodies.

New perspectives on diagnostics, identification, and typing

S. pneumoniae is identified in clinical microbiology laboratories by colony morphology, bile solubility, and optochin sensitivity. However, a number of isolates shows resistance to one or both compounds, leading to misinterpretation in their characterization. On the other hand, the amount of

TABLE 2. Diagnostics, identification, and typing methods for *S. pneumoniae* that involve virulence factors

<table>
<thead>
<tr>
<th>Tools</th>
<th>Target</th>
<th>Performance</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binax NOW</td>
<td>C-polysaccharide</td>
<td>86% sensitivity, 94% specificity in urine</td>
<td>False-positive with upper respiratory tract colonization</td>
<td>Binax, Inc.</td>
</tr>
<tr>
<td>ELISA assay</td>
<td>PLY</td>
<td>100% sensitivity in urine</td>
<td>False-positive with S. suis</td>
<td>54</td>
</tr>
<tr>
<td>Capsular polysaccharide</td>
<td>PLY</td>
<td>90% sensitivity, 99% specificity in urine</td>
<td>Only detects 13 serotypes</td>
<td>55</td>
</tr>
<tr>
<td>Immunosensor</td>
<td>PLY</td>
<td>Simple, cheaper, and faster than ELISA</td>
<td>Doesn’t improve chemiluminescent ELISA</td>
<td>56</td>
</tr>
<tr>
<td>PCR</td>
<td>f5A</td>
<td>78% sensitivity in pleural fluid</td>
<td>False-positive with upper respiratory tract colonization</td>
<td>57</td>
</tr>
<tr>
<td>Nested-PCR</td>
<td>ply</td>
<td>78% sensitivity, 93% specificity in pleural fluid</td>
<td>4% false-positive rate</td>
<td>58</td>
</tr>
<tr>
<td>Real-time PCR</td>
<td>ply</td>
<td>90% sensitivity, 80% specificity in sputum</td>
<td>13% false-negative rate</td>
<td>59</td>
</tr>
<tr>
<td>Identification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binax NOW</td>
<td>C-polysaccharide</td>
<td>100% sensitivity, 81% specificity in BCB</td>
<td>False-positive due to the S. mitis group</td>
<td>53</td>
</tr>
<tr>
<td>Agglutination</td>
<td>PLY</td>
<td>95% sensitivity, 100% specificity</td>
<td>False-negatives correspond to low PLY-producing isolates</td>
<td>51</td>
</tr>
<tr>
<td>ELISA assay</td>
<td>PLY</td>
<td>Sensitivity 100%</td>
<td>No false-negative results. Potential false-negatives</td>
<td>61</td>
</tr>
<tr>
<td>LAMP</td>
<td>f5A</td>
<td>Simple equipment, visible results with the naked eye</td>
<td>Differentiates S. pneumoniae vs. S. mitis and S. oralis</td>
<td>62</td>
</tr>
<tr>
<td>Typing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR-RFLP</td>
<td>Capsular polysaccharide locus</td>
<td>Serotype/serogroup identification. Fully portable, cost-effective</td>
<td>Laboratory with sufficient molecular experience</td>
<td>63</td>
</tr>
<tr>
<td>Multiplex PCR</td>
<td>Capsular polysaccharide locus</td>
<td>Fast and far more cost-effective</td>
<td>Only determines seven serotypes</td>
<td>64</td>
</tr>
<tr>
<td>MCT</td>
<td>Capsular polysaccharide locus</td>
<td>Serotype/serogroup identification. Specific, objective</td>
<td>Genechip microarrays would make more practical for routine use</td>
<td>65</td>
</tr>
<tr>
<td>MLST + ply sequencing</td>
<td>arcB, gdh, gki, rec, spi, xpt, dkl, ply</td>
<td>Serotypeable/nonserotypeable identification</td>
<td>ply alleles different. Useful to resolve difficult cases</td>
<td>66</td>
</tr>
</tbody>
</table>

*Used in clinical samples in diagnostic microbiological laboratories. PLY: pneumolysin; f5A: autolysin gene; ply: pneumolysin gene; BCB: blood culture bottles; LAMP: Loop-mediated isothermal amplification; RFLP: Restriction fragment length polymorphism; MLST: multilocus sequence typing; arcB, gdh: dehydrogenase gene; gki: glucose-6-phosphate dehydrogenase gene; rec: fructokinase; spi: signal peptidase I; xpt: xanthine phosphoribosyltransferase; dkl: D-alanine-D-alanine ligase.

Enferm Infecc Microbiol Clin 2006;24(8):512-7 515
nonsertype pneumococcal strains is low (7%) when re-
covering from respiratory tract, blood and usually sterile
sites, but this percentage could reach 20% in conjunctival
and nasopharyngeal exudates. In these conditions, DNA
techniques are needed for accurate species identification.
In 1999, a simple test based on PLY immunodetection for
fast, reliable species identification with good sensitivity
and specificity was developed.
Pneumococcal serotyping
by capillary swelling (Quellung reaction) is labour intensive
and requires a certain degree of expertise; thus, its use
has been restricted to specialized reference or research labora-
tories, but this percentage could reach 20% in conjunctival
and nasopharyngeal exudates. In these conditions, DNA
techniques are needed for accurate species identification.

In 1999, a simple test based on PLY immunodetection for
fast, reliable species identification with good sensitivity
and specificity was developed.

Acknowledgements
This work was supported in part by the MCT-03-BIO-0600-C0302.
M.M.G. was financed by the MCT of Spain. The authors would like to
thank Priscilla Chase for her English language revision of the man-
uscript.

References
1. Giral JP, Cherrier T, Perroud T, Kien MF. A review of vaccine research and
2. Reinert BR. Pneumococcal conjugate vaccines – a European perspective.
3. Meda SA, Kugns P, the Vaccine Trialist Group. A role for Streptococcus
4. Zar HJ, Pneumococcal in HIV-infected and HIV-uninfected children in de-
veloping countries: epidemiology, clinical features, and management. J Infect
microbial susceptibility and pneumococcal serotypes. J Antimicrob Chem-
other. 2002;50 Suppl 1:9.
Pneumococcal seroprevalence to capsular protein and penicillin in rela-
tion to macrolide and beta-lactam consumption in Spain (1979-1997). J
7. Reinert BR, Bingelman A, Van der Linden M, Cal MV, Al-Lahham A, Sch-
duction of antibiotic use in the community reduces the rate of colonization
novel valent conjugate pneumococcal vaccine on carriage and drug re-
sistance of Streptococcus pneumoniae in healthy children attending day-care
proteins and allows cross-reactivity with the pneumococcal C polysaccharide
11. Hanfage WP, Kikoiniith TH, Sijtisso K, Arnon K, Leitso M, Ma-
teka PH, et al. Incidence of nasopharyngeal and clinic isolates of Streptococcus
12. Rathod RP, Prasamr P. Genetic variation followed by ble gel move-
ment of Streptococcus pneumoniae clinical and carriage isolates identifies ge-
netic difference associated with strain that causes otitis media. Infect Immun.
13. Mutter WW, Prasamr P. Genetic variation followed by ble gel move-
movement of Streptococcus pneumoniae clinical and carriage isolates identifies ge-
netic difference associated with strain that causes otitis media. Infect Immun.
14. Hanfage WP, Kikoiniith TH, Sijtisso K, Arnon K, Leitso M, Ma-
teka PH, et al. Incidence of nasopharyngeal and clinic isolates of Streptococcus
15. Rathod RP, Prasamr P. Genetic variation followed by ble gel move-
movement of Streptococcus pneumoniae clinical and carriage isolates identifies ge-
netic difference associated with strain that causes otitis media. Infect Immun.
16. Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Muller E, Rohde M. Illus-
tion of pneumococcal conjugate vaccine carriage and carriage isolates identifies ge-
netic difference associated with strain that causes otitis media. Infect Immun.
17. Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Muller E, Rohde M. Illus-
tion of pneumococcal conjugate vaccine carriage and carriage isolates identifies ge-
netic difference associated with strain that causes otitis media. Infect Immun.
18. Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Muller E, Rohde M. Illus-
tion of pneumococcal conjugate vaccine carriage and carriage isolates identifies ge-
netic difference associated with strain that causes otitis media. Infect Immun.
19. Austrian R. Pneumococcal otitis media and pneumococcal vaccines, a histo-
20. Briles DE, Hollingshead SK, Nabors GS, Paton JC, Brooks-Walter A. The
pneumococcal group a, PspA, can be produced in splenectomized
21. Bogaert D, Hermansa PWM, Adrian PV, Rümke HC, De Groot R, Rumke HC,
et al. Invasiveness of serotypes and clones of Streptococcus pneu-
22. Bogaert D, Van Belkum A, Sluijter M, Lanjouw DJ, De Groof G, Rams EJ,
et al. Valine to glutamine at 23rd position in Streptococcus pneumoniae
proteins and allows cross-reactivity with the pneumococcal C polysaccharide
23. Bogaert D, Hermansa PWM, Adrian PV, Rümke HC, De Groot R, Rumke HC,
et al. Invasiveness of serotypes and clones of Streptococcus pneu-
24. Harris SL, Park MK, Nahm MH, Diamond B. Peptide mimic of phosphoryl-
choline, a dominant epitope found on Streptococcus pneumoniae.
26. Reinert BR, Bingelman A, Van der Linden M, Cal MV, Al-Lahham A, Sch-
27. Reinert BR, Bingelman A, Van der Linden M, Cal MV, Al-Lahham A, Sch-

