Predictive model of short-term amputation during hospitalization of patients due to acute diabetic foot infections

Jose´ Barbera´n a,*, Juan-Jose´ Granizo b, Lorenzo Aguilar c, Rafael Alguacil d, Felipe Sainz d, Maria-Antonia Men´endez a, Maria-Jose´ Gime´nez c, David Martı´nez e and Jose´ Prieto c

a Infectious Diseases Department, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
b Granadatos, Demetrio de la Guerra 4, 28223 Pozuelo de Alarcon, Madrid, Spain
c Microbiology Department, School of Medicine, Universidad Complutense, Madrid, Spain
d Vascular Surgery Department, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
e Preventive Medicine Department, School of Medicine, Universidad Complutense, Madrid, Spain

ARTICLE INFO
Article history:
Received 16 March 2009
Accepted 10 December 2009
Available online 31 May 2010

Keywords:
Diabetes
Foot acute infections
Amputation
Predictive model
Wagner's grade

ABSTRACT
Introduction: Factors predicting short-term amputation during hospital treatment of patients admitted for acute diabetic foot infections are of interest for clinicians managing the acute episode.

Methods: A retrospective clinical records analysis of 78 consecutive patients hospitalized for acute diabetic foot infections was performed to identify predictive factors for short-term amputation by comparing the data of patients who ultimately required amputation and those who did not. Clinical/epidemiological, laboratory, imaging, and treatment variables were comparatively analyzed. A logistic regression model was performed, with amputation as the dependent variable and factors showing significant differences in the bivariate analysis as independent variables. A prediction score was calculated (and validated by ROC curve analysis) using beta coefficients for significant variables in the regression analysis to predict amputation.

Results: Of the 78 patients (70.5% with peripheral vasculopathy) included, 26 ultimately required amputation. In the bivariate analysis, white blood cell count, previous homolateral lesions, odor, lesion depth, sedimentation rate, Wagner ulcer grade, and arterial obstruction on Doppler study were significantly higher in patients ending in amputation. In the multivariate analysis, the risk of amputation was increased only by Wagner grade 4 or 5 (20-fold higher), obstruction (12.5-fold higher), and elevated sedimentation rate (6% higher per unit). Logistic regression predicted outcome in 76.9% of patients who underwent amputation and 92.3% of those who did not.

Conclusion: The score calculated using beta coefficients for significant variables in the regression model (Wagner grades 4 and 5, obstruction on Doppler, and elevated sedimentation rate for the clinical, imaging, and laboratory data, respectively) correctly predicted amputation during hospital management of acute diabetic foot infections.

© 2009 Elsevier España, S.L. All rights reserved.
Factors that

In this regard, diabetic patients have a 10-fold

Diabetic foot ulcers were classified

and those with

Material and methods

Patients were assigned to one of the 6 grades (0–5) of the Wagner

pedal and popliteal pulses and an absence of vascular lesions.

formed at admission, except when the patient presented good

routine hospital practice. Noninvasive Doppler study was per-

out every 1 to 2 weeks during hospitalization, in keeping with the

abscesses), laboratory, and radiographic evaluations were carried

of purulent drainage, curetted material, or aspiration of unopened

foot infection. A clinical evaluation including neurological and

Ulla in Madrid (Spain) over a 42-month period for acute diabetic

Surgery Department of Hospital Central de la Defensa Gomez

did not.

in patients who developed criteria for amputation with those who

and deficient sweating, which leads to skin dryness. Ischemia

renders the skin less able to withstand these factors. The
coeexistence of neuropathy, ischemia (the prevalence of peripheral

vascular disease among diabetics is 10%), and leukocyte immune

function disorders favors the development of severe, extensive

infection, and infected foot wounds precede about two-thirds of

amputations. In this regard, diabetic patients have a 10-fold

greater risk of being hospitalized for bone and soft tissue infection

of the foot than individuals without diabetes, and those with

infected ischemic lesions have a 9-fold greater chance of under-

going amputation than those without ischemia or infection.

This study investigates the predictive factors for amputation
during hospital treatment of acute diabetic foot infections by

comparing the clinical, laboratory, and imaging data at admission

in patients who developed criteria for amputation with those who
did not.

Introduction

Approximately 7.5% of persons with diabetes have a history of

previous or active foot ulcer, and the lifetime risk of experiencing
this condition is up to 15% in this population. Factors that

precipitate a skin break or impair healing can lead to foot

ulceration, putting the foot at risk. Peripheral neuropathy implies

abnormal forces applied to the foot, lack of protective sensation,

and deficient sweating, which leads to skin dryness. Ischemia

renders the skin less able to withstand these factors. The

coeexistence of neuropathy, ischemia (the prevalence of peripheral

vascular disease among diabetics is 10%), and leukocyte immune

function disorders favors the development of severe, extensive

infection, and infected foot wounds precede about two-thirds of

amputations. In this regard, diabetic patients have a 10-fold

greater risk of being hospitalized for bone and soft tissue infection

of the foot than individuals without diabetes, and those with

infected ischemic lesions have a 9-fold greater chance of under-

going amputation than those without ischemia or infection.

This study investigates the predictive factors for amputation
during hospital treatment of acute diabetic foot infections by

comparing the clinical, laboratory, and imaging data at admission

in patients who developed criteria for amputation with those who
did not.

Material and methods

A retrospective analysis of clinical records was performed in a

cohort of 78 consecutive patients with diabetes type II who had

not undergone a previous amputation. All patients had been

admitted to the Infectious Disease Department or Vascular

Surgery Department of Hospital Central de la Defensa Gomez

Ulla in Madrid (Spain) over a 42-month period for acute diabetic

foot infection. A clinical evaluation including neurological and

vascular status was performed daily, and microbiological (culture

of purulent drainage, curedt material, or aspiration of unopened

abscesses), laboratory, and radiographic evaluations were carried

out every 1 to 2 weeks during hospitalization, in keeping with the

routine hospital practice. Noninvasive Doppler study was per-

formed at admission, except when the patient presented good

pedal and popliteal pulses and an absence of vascular lesions.

Patients were assigned to one of the 6 grades (0–5) of the Wagner

ulcer classification system. Diabetic foot ulcers were classified

into 3 groups: 1) neuropathic lesions: those present for months,

surrounded by callus, occurring on the planter aspect of a

neuropathic foot (foot warm and well perfused with palpable

pulses, decreased sweating, and sometimes, dry skin prone to

fissuring), 2) ischemic lesions: those in an ischemic foot in the

absence of neuropathy, and 3) mixed or neuro-ischemic lesions:

presence of neuropathy and ischemia (foot cool, pulseless,

presenting thin, shiny skin with no hair).

Infection was defined by the presence of at least 3 of the

following signs or symptoms: fever (≥ 38 °C), leukocytosis

(white blood cell count ≥ 10 × 10³/mm³), local pain, tenderness,

erythema, induration and/or presence of purulent secretion.

Osteomyelitis was diagnosed by clinical criteria (bone exposure),

radiological criteria (decrease in radiological density or cortical

lyses in bone subjacent to soft tissue infection), and/or nuclear

bone scan criteria (using technetium-99m methylene diphos-

phonate, gallium Ga 67 citrate, and indium-111-labeled white

blood cells as tracers). Patients who underwent amputation at

admission, pregnant patients, and those with life-threatening
diseases (shock, hemodynamic alterations) or severe immuno-

suppression (oncological treatments) were excluded.

In accordance with the hospital treatment protocol, patients

were parenterally treated for at least 2 weeks with a third-
generation cephalosporin plus metronidazole, or a quinolone plus

cilindamicin, or aztreonam plus cilindamicin, together with

concomitant surgical debridement, revascularization (bypass),
sympathectomy, and/or reconstruction (skin graft) techniques.

Patients who developed criteria for amputation during hospital

treatment for diabetic foot infection underwent this type of

surgery.

For the data analysis, patients were divided into 2 groups:
those who ultimately underwent amputation and those who did

not. Clinical/epidemiological, laboratory, imaging, and treatment

variables were comparatively analyzed between these 2 groups.

The clinical/epidemiological variables recorded were gender, age,

insulin use, duration of diabetes mellitus, diabetes comorbidities,

previous foot lesions, main cause of foot wound, wound location,
type of lesion, suppuration, odor, and lesion depth according to

the Wagner classification. The laboratory data included white

blood cell and platelet counts, hemoglobin, sedimentation rate,
glycemia, creatinine concentration, and baseline microbiological

culture. Imaging data consisted of alterations on radiography or

nuclear bone scan, and lesion location and severity on arterial

Doppler study (patients with normal Doppler features and those

in whom Doppler was not performed because of good pedal and

popliteal pulses and absence of vascular lesions were considered

“normal”). Antimicrobrial treatment and concomitant surgical

techniques were also compared between groups.

Data expressed in terms of frequency were analyzed using the

chi-square test, and data expressed as mean ± standard deviation,

using the Student t-test, Mann-Whitney test or Wilcoxon test,

when appropriate. A significance level of P ≤ 0.05 was chosen.

A logistic regression model was performed with amputation

(yes/no) as the dependent variable and factors showing significant
differences in the bivariate analysis as independent variables. The statistical analysis was performed with SPSS v14 (SPSS Inc., Chicago IL), choosing the “Introduce” command for the regression model. A scoring system was developed to predict amputation, using beta coefficients for significant variables in the regression analysis. The score was validated by receiver operating characteristic (ROC) curve analysis, determining the sensitivity and specificity for each cut-off. The greater the area of the ROC curve covering the theoretical square area, the greater the predictive capability.

Results

The demographic, clinical and laboratory data at admission of patients included in this study, divided into the 2 analysis groups, are shown in Table 1. In the overall study population, mean age was 68.9 ± 10.4 years, 57.7% were males, mean time of diabetes evolution was 14.9 ± 8.5 years, and 50.0% of patients were receiving insulin treatment. There were no differences in these parameters when patients were divided into the 2 analysis groups.

The main cause of the foot wound was peripheral vasculopathy (70.5%), with no significant differences between the groups. However, a larger percentage of patients with peripheral vasculopathy (53.8% vs. 32.7%) and comorbid conditions (34.6% vs. 23.1%) were seen in the group ultimately requiring amputation than in the group that did not, although the differences were not statistically significant. A significantly higher percentage of patients had previous foot lesions (homolateral lesions in all cases) \((P=0.001)\), higher leukocytosis \((P=0.001)\), and higher sedimentation rate \((P=0.002)\) in the group ultimately undergoing amputation.

The characteristics of the lesions at admission are shown in Table 2. The most frequent wound location in both groups was the toes (53.8%). A significantly larger percentage of patients presenting necrosis (myonecrosis [gangrene] and/or necrotizing fasciitis), odor, and involvement of skin and soft tissue plus bone was found in the group requiring amputation, whereas a higher percentage of patients with suppuration and exclusive involvement of either bone or skin and soft tissue was found in the group that did not require amputation. Distribution of patients by Wagner ulcer classification showed grades 4 and 5 in 76.9% patients who underwent amputation and grade ≤ 3 in 84.6% of those who did not \((P<0.001)\). Samples for microbiological culture were taken in 56 patients, and 50 of them (89.2%) yielded bacterial growth. The infection was monomicrobial in 38% of cases (19 of 50), and polymicrobial in 62% of cases (31 of 50). *Staphylococcus aureus* was the most frequently isolated microorganism (40% of samples), followed by *Staphylococcus epidermidis* (19%), *Klebsiella spp* (8%), *Pseudomonas aeruginosa* (8%), *Escherichia coli* (6%), *Enterococcus spp* (6%) and anaerobes (6%).

Data on the imaging diagnosis and arterial Doppler at admission are shown in table 3. In the overall population, radiographs disclosed bone alterations in 56.4% patients and no alterations in 29.5%, with no differences when patients were divided into the 2 study groups. Nuclear bone scan was performed in 45 patients and 73.3% were positive, with no significant differences between the groups. Doppler study was carried out in 67 (85.9%) patients: 84.6% of those in the amputated group and 71.9% in those who did not require amputation \((P=0.001)\).

No between-group differences were found with respect to antibiotic treatment: 20%, 40%, and 40% patients ending in amputation, and 23%, 50%, and 27% patients who did not, received third-generation cephalosporin plus metronidazole, aztreonam

Table 1

Demographic data, previous lesions, main cause of foot wound, and baseline laboratory data of patients with diabetic foot infection undergoing amputation vs. no amputation

<table>
<thead>
<tr>
<th></th>
<th>Amputation (n=26)</th>
<th>No amputation (n=52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y (mean ± SD)</td>
<td>70.5 ± 9.6</td>
<td>68.0 ± 10.8</td>
</tr>
<tr>
<td>% Males</td>
<td>65.4</td>
<td>53.8</td>
</tr>
<tr>
<td>Years with diabetes (mean ± SD)</td>
<td>14.1 ± 10.2</td>
<td>15.3 ± 7.6</td>
</tr>
<tr>
<td>% Patients with insulin therapy</td>
<td>46.2</td>
<td>51.9</td>
</tr>
<tr>
<td>Diabetes comorbidities (% patients)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No comorbidities</td>
<td>0</td>
<td>11.5</td>
</tr>
<tr>
<td>Peripheral vasculopathy</td>
<td>53.8</td>
<td>32.7</td>
</tr>
<tr>
<td>Cardiopathy</td>
<td>3.8</td>
<td>11.5</td>
</tr>
<tr>
<td>Retinopathy</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Nephropathy</td>
<td>0</td>
<td>3.8</td>
</tr>
<tr>
<td>Previous bone lesion</td>
<td>3.8</td>
<td>13.5</td>
</tr>
<tr>
<td>Several comorbidities</td>
<td>34.6</td>
<td>23.1</td>
</tr>
<tr>
<td>Previous foot lesions (% patients)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No lesions</td>
<td>0</td>
<td>34.6</td>
</tr>
<tr>
<td>Homolateral</td>
<td>100</td>
<td>1.9</td>
</tr>
<tr>
<td>Contralateral</td>
<td>0</td>
<td>1.9</td>
</tr>
<tr>
<td>Main cause of foot wound (% patients)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasculopathy</td>
<td>76.9</td>
<td>68.6</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>0</td>
<td>13.7</td>
</tr>
<tr>
<td>Mixed</td>
<td>23.1</td>
<td>17.6</td>
</tr>
<tr>
<td>White blood cells, ×10^6/mm³ (mean ± SD)</td>
<td>9.6 ± 2.5</td>
<td>7.8 ± 2.1</td>
</tr>
<tr>
<td>Platelets, ×10^4/mm³ (mean ± SD)</td>
<td>266.0 ± 84.8</td>
<td>238.2 ± 64.6</td>
</tr>
<tr>
<td>Hemoglobin, mg/dL (mean ± SD)</td>
<td>12.1 ± 1.7</td>
<td>12.1 ± 1.7</td>
</tr>
<tr>
<td>Creatinine, mg/dL (mean ± SD)</td>
<td>1.6 ± 0.3</td>
<td>1.6 ± 0.9</td>
</tr>
<tr>
<td>Sedimentation rate, mm/h (mean ± SD)</td>
<td>50.1 ± 20.1</td>
<td>33.9 ± 21.7</td>
</tr>
<tr>
<td>Glycemia, mg/dL (mean ± SD)</td>
<td>243.3 ± 55.2</td>
<td>232.0 ± 88.1</td>
</tr>
</tbody>
</table>

\(^{a} P < 0.001. \)

Table 2

Characteristics of lesions in patients with diabetic foot infection undergoing amputation vs. no amputation

<table>
<thead>
<tr>
<th></th>
<th>Amputation (n=26)</th>
<th>No amputation (n=52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wound location (% patients)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toes</td>
<td>53.8</td>
<td>53.8</td>
</tr>
<tr>
<td>Forefoot</td>
<td>38.5</td>
<td>19.2</td>
</tr>
<tr>
<td>Heel</td>
<td>3.8</td>
<td>19.2</td>
</tr>
<tr>
<td>Entire foot</td>
<td>3.8</td>
<td>1.9</td>
</tr>
<tr>
<td>Leg</td>
<td>0</td>
<td>5.8</td>
</tr>
<tr>
<td>Type of lesion (% patients)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular ulcer</td>
<td>53.8</td>
<td>55.8</td>
</tr>
<tr>
<td>Neuropathic ulcer</td>
<td>0</td>
<td>19.2</td>
</tr>
<tr>
<td>Necrosis</td>
<td>46.2</td>
<td>19.2</td>
</tr>
<tr>
<td>Cellulitis</td>
<td>0</td>
<td>5.8</td>
</tr>
<tr>
<td>Lesion suppuration (% patients)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>46.2</td>
<td>69.2</td>
</tr>
<tr>
<td>Grade 4</td>
<td>57.7</td>
<td>15.4</td>
</tr>
<tr>
<td>Grade 5</td>
<td>19.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Wagner classification (% patients)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade ≤ 2</td>
<td>15.4</td>
<td>50.0</td>
</tr>
<tr>
<td>Grade 3</td>
<td>7.7</td>
<td>34.6</td>
</tr>
<tr>
<td>Grade 4</td>
<td>19.2</td>
<td>15.4</td>
</tr>
<tr>
<td>Grade 5</td>
<td>19.2</td>
<td>0.0</td>
</tr>
</tbody>
</table>

\(^{a} P ≤ 0.05. \)

\(^{b} P ≤ 0.01. \)
In the bivariate analysis, white blood cell count, previous homolateral foot lesions, odor, lesion depth, sedimentation rate, Wagner classification grade, and arterial Doppler study: lesion location were significantly associated with amputation. The highest predictive value for amputation was obtained with a predictive score cut-off of 4.375 (sensitivity 96.2%; specificity 78.8%).

Discussion

Infection is rarely implicated in the etiology of diabetic foot ulcers, but ulcers are susceptible to infection and for most of these patients, infection is a pivotal event that leads to limb complications, including amputation. Wound infections must be diagnosed clinically,7 and many risk factors for foot ulcers are also predisposing factors for amputation.8,9 at a site where culture of wound material is usually not recommended10 and radiography is not a highly sensitive indicator of acute bone infection.11 In addition, vascular status should always be assessed because lesions that are ischemic and infected carry a risk of lower limb amputation 90 times greater than lesions without these two factors.3 With respect to vasculopathy, in the current study, data showed a higher odds ratio (20.00, 95% CI 3.62–111.11; P=0.001) than reference grades 0–3, which was followed by arterial obstruction on Doppler (odds ratio=12.50; 95% CI=1.42–106.67; P=0.003), and the sedimentation rate (odds ratio=1.06; 95% CI=1.01–1.10; P=0.013). These 3 variables explained the best goodness of the fit (R^2 Cox =0.522; P<0.001).

Using exponentiation of the beta coefficients for significant variables (Doppler severity, DS [obstruction=3, stenosis/normal=1], Wagner grade, WG [grades 4 and 5 =5; grades 0–3=1], and sedimentation rate, SR [100/crude sedimentation rate]) in the regression analysis, the predictive score was constructed as SCORE=DS\timesWG+\timesSR. The score range was 2.01–8.78, and the area under curve in the ROC analysis was 0.93 (P<0.001) (Fig. 1).

A cut-off ≤2.31 showed 100% specificity and 37.5% sensitivity for no amputation, and a cut-off ≥8.38 showed 100% specificity and 46.2% sensitivity for amputation. The highest predictive value for amputation was obtained with a predictive score cut-off of 4.375 (sensitivity 96.2%; specificity 78.8%).

Image diagnosis and arterial Doppler in patients with diabetic foot infection undergoing amputation vs. non-amputation

<table>
<thead>
<tr>
<th>Radiography (% patients)</th>
<th>Amputation (n=26)</th>
<th>Non amputation (n=52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No alterations</td>
<td>26.9</td>
<td>30.8</td>
</tr>
<tr>
<td>Arterial calcification</td>
<td>7.7</td>
<td>11.5</td>
</tr>
<tr>
<td>Soft tissue alterations</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Bone alterations</td>
<td>61.5</td>
<td>53.8</td>
</tr>
</tbody>
</table>

Doppler study: lesion location (% patients)
- Performed: 26, 41
- Femoral: 15.4
- Popliteal: 26.9
- Distal: 57.7

Severity on arterial Doppler (% patients)
- Normal: 0.0
- Stenosis: 15.4
- Obstruction: 84.6

Nuclear bone scan (% patients)
- Performed: 15
- Positive: 86.7
- Negative: 13.3

a P=0.001.

b Corresponds to 11 patients in whom Doppler was not performed because of good pedal and popliteal pulses and absence of vascular lesions.
obstruction on Doppler study were significantly higher in patients ending in amputation. Nonetheless, in the multivariate analysis, the risk of amputation was only increased by Wagner’s grade 4 and 5 (20-fold higher risk), obstruction (but not stenosis) seen on arterial Doppler (12.5-fold higher risk) and elevated sedimentation rate (6% risk increase per sedimentation unit). Of note, most lesions in our study population were of vasculopathic origin, and neuropathic lesions occurred in only 13.7% of non-amputated patients. This is consistent with hospital management of these lesions, since ischemia portends a poor prognosis for healing without vascular interventions. However, we found no differences between the concomitant surgical procedures performed in patients ultimately requiring amputation and those who did not.

Although this is a retrospective analysis in only 78 consecutive patients, the logistic regression correctly predicted outcome in 87.2% of patients (68 out of 78) in the cohort: 92.3% of those (48 out of 52) who did not undergo amputation and 76.9% of those (20 out of 26) requiring amputation.

As has been reported, amputation is a marker of diabetic foot infections as well as a marker of disease management. High amputation rates can depend on the prevalence of disease, late presentation, inadequate resources, and a particular local approach by surgeons, whereas low amputation rates may be a result of better care, perhaps provided by an experienced “foot team” or, conversely, of inappropriate conservative treatment. Regardless of these epidemiological/sociological facts, the disease presentation (clinical, imaging, and laboratory data) in patients without a previous amputation is an important clue to predict amputation during hospital management of acute diabetic foot infections on a single-hospital basis, since management of diabetic foot ulcers is based more on opinion than scientific facts.1 In this line, the score calculated in the present study using beta coefficients for the 3 significant variables in the regression model (Wagner grades 4 and 5, arterial obstruction on Doppler, and elevated sedimentation rate as the clinical, imaging and laboratory data, respectively) correctly predicted amputation during hospital management of acute diabetic foot infections.

This study did not receive public or private financial support.

The study was approved by the Ethical Review Committee of Hospital Central de la Defensa Gómez Ulla, Madrid, Spain.

Conflict of interest

The authors have no conflict of interest to declare.

References