Prevalence of parent-reported immediate hypersensitivity food allergy in Chilean school-aged children

R. Hoyos-Bachiloglu, D. Ivanovic-Zivic, J. Álvarez, K. Linn, N. Thöne, M. de los Ángeles Paul, A. Borzutzky

A Allergy and Immunology Unit, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Chile
B Millennium Institute on Immunology and Immunotherapy, School of Medicine, Pontificia Universidad Católica de Chile, Chile

Received 24 May 2013; accepted 21 September 2013
Available online 2 January 2014

KEYWORDS
Anaphylaxis; Children; Chile; Food allergy; Prevalence; Epinephrine autoinjector; Parent-reported; Immediate hypersensitivity; Peanut allergy; Walnut allergy

Abstract
Background: Food allergies (FAs) affect 2–4% of school-aged children in developed countries and strongly impact their quality of life. The prevalence of FA in Chile remains unknown.
Methods: Cross-sectional survey study of 488 parents of school-aged children from Santiago who were asked to complete a FA screening questionnaire. Parents who reported symptoms suggestive of FA were contacted to answer a second in-depth questionnaire to determine immediate hypersensitivity FA prevalence and clinical characteristics of school-aged Chilean children.
Results: A total of 455 parents answered the screening questionnaire: 13% reported recurrent symptoms to a particular food and 6% reported FA. Forty-three screening questionnaires (9%) were found to be suggestive of FA. Parents of 40 children answered the second questionnaire; 25 were considered by authors to have FA. FA rate was 5.5% (95% CI: 3.6–7.9). Foods reported to frequently cause FA included walnut, peanut, egg, chocolate, avocado, and banana. Children with FA had more asthma (20% vs. 7%, P < 0.02) and atopic dermatitis (32% vs. 13%, P < 0.01) by report. The parents of children with FA did not report anaphylaxis, but 48% had history compatible with anaphylaxis. Of 13 children who sought medical attention, 70% were diagnosed with FA; none were advised to acquire an epinephrine autoinjector.
Conclusion: Up to 5.5% of school-aged Chilean children may suffer from FA, most frequently to walnut and peanut. It is critical to raise awareness in Chile regarding FA and recognition of anaphylaxis, and promote epinephrine autoinjectors in affected children.
© 2013 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.
Introduction

Food allergy (FA) is defined as an adverse health effect arising from a specific immune response that occurs reproducibly on exposure to a given food. FA has been associated with an impaired quality of life, limited social interactions, a heightened risk of severe allergic reactions and potential fatality, and high socioeconomic costs. The real prevalence of FA is difficult to establish since most studies have either focused on specific populations or only on selected food allergens, or have used different protocols and definitions of FA. Because FA prevalence depends on the eating habits and the ethnic background of the studied population, FA rates and foods involved also vary internationally. A recent meta-analysis of 51 studies reported that the self-reported prevalence of FA ranged from 3% to 35%. Despite an increasing prevalence of asthma and allergic rhinitis in Chile, no data on FA epidemiology are available to date. Vio et al. reported parental perception of food-related symptoms to be as high as 39% in Chilean children.

In this study, one-third of the parents who described food-related symptoms eliminated the suspected food from the diet. However, the study did not mention clinical characteristics of reactions, temporality of symptoms, or if physician diagnosis of FA was made. Thus, the prevalence of FA in Chilean children is unknown. The objective of this study is to evaluate the prevalence and clinical characteristics of parent-reported FA in school-aged children from Santiago, Chile.

Materials and methods

We conducted a population based cross-sectional survey study in Santiago, Chile, between September 2011 and December 2012. Population sampling was made by convenience in five private schools from different areas of Santiago, each school having three classes per grade. Parents of children attending kindergarten, 5th grade and 9th grade at the moment of recruitment were invited to participate in the study (i.e. ~5, 10, and 15-year-old children). Recruitment took place at parent-teacher meetings regularly scheduled by the participant schools. Each school was approached only once and at that time recruitment took place in all grades and classes simultaneously (kindergarten, 5th grade and 9th grade). During parent-teacher meetings, parental informed consent to participate in the study was obtained and then parents were asked to answer a screening questionnaire about food allergies (FAs). If the answers of this questionnaire suggested that the child possibly suffered from FA, the parents were contacted telephonically to answer an extended questionnaire about the child’s food-induced symptoms. Children with a second extended questionnaire that was convincing of FA were considered to have FA by the study authors.

Reactions to food were considered to be “convincing” if the organ systems affected and symptoms were typical of those involved in immediate hypersensitivity allergic reactions (skin with hives and angio-oedema; respiratory tract with trouble breathing, wheezing or throat tightness; and gastrointestinal tract with vomiting and diarrhoea) and occurred within 2 h of ingestion. It has previously been reported that these criteria have high sensitivity for positive specific food IgE (immediate hypersensitivity) in affected patients.

The Ethics Committee of the Pontificia Universidad Católica de Chile School of Medicine approved this study.

Questionnaires:

Two different FA questionnaires were applied in this study: a screening questionnaire and an extended in-depth questionnaire. Both questionnaires were adapted from surveys originally published in English and were validated for this study by translation to Spanish and retranslation to English. The screening questionnaire was modified from Marrugo et al., and was self-applied by parents during parent–teacher meetings. This questionnaire collected basic demographic and clinical information about the child: gender, age, allergic diseases, food-related recurrent symptoms, foods involved, parental suspicion of FA, elimination diets and physician diagnosis of FA.

The second questionnaire was applied telephonically to the parents by the authors and was adapted from a US-based telephone survey conducted by Sicherer et al. This questionnaire collected in-depth information on food-related recurrent symptoms, foods involved, temporality of symptoms, number of reactions, age of first exposure to foods, history of medical attention, physician diagnosis of FA, treatments prescribed during allergic reactions, and prescription of epinephrine autoinjectors.

Statistical analysis

Using an estimated prevalence of self-reported FA of 13%, an absolute error of three percent and 95% confidence level, we obtained a calculated sample size of 447 children which was considered representative of the total population of five schools in Santiago (5850 children).

The data obtained were analysed using the PASW Statistics software package version 18.0 (SPSS Inc, Chicago, USA) and OpenEpi software version 2.3.1 (www.OpenEpi.com, updated 2011/23/06, accessed 2013/01/22). Statistical analysis was performed using descriptive statistics and we used Chi square test to examine the association of FA with other atopic diseases, age, and season of birth. Rates are reported as rate (95% confidence intervals) per 100 inhabitants. A two-sided P-value < 0.05 was considered statistically significant.

Results

A total of 488 screening questionnaires were delivered and 455 were answered (response rate of 93%) (Fig. 1). Fifty-four percent of the population was male. At the time of the study, 29% of them were attending kindergarten, 35% fifth grade, and 36% ninth grade. Forty-two percent (n = 191) of the surveyed parents reported that their child suffered from an allergic disease (Table 1). Parental report of FA in this same question was 6%.

According to the parental report, 13% (n = 63) of the children suffered from recurrent symptoms related to food ingestion: 41% abdominal pain, 37% hives, 16% vomiting, 13% diarrhoea, 10% swelling, 5% pruritus, and 3% trouble breathing. Among these 63 children, the foods more frequently
reported by the parents as causing recurrent symptoms were: 25% milk; 14% chocolate; 11% egg; 10% walnut; 10% avocado; 10% banana; 8% peanut; 8% shellfish; 6% fish; 6% citrus fruits; and 6% wheat. Estimated prevalence rates for foods causing recurrent symptoms in Chilean school-aged children are shown in Fig. 2. Of the 63 parents who reported that their child suffered from recurrent symptoms related to food ingestion, 57% sought medical attention and 84% removed the causative food from the child’s diet, but only 34% (n = 22) of these children were diagnosed with FA by a physician.

After analysis of the 455 questionnaires, 43 (9%) were considered to report a possible FA either due to medical diagnosis of FA or suggestive symptoms of FA. Twenty children with recurrent symptoms related to food ingestion were excluded after the screening questionnaire because the symptoms were highly unlikely to be related to FA (e.g. headache and bloating) or due to incomplete contact information. Three children were unreachable after at least five repeated telephone calls and therefore did not answer the second questionnaire. Forty parents answered the second questionnaire. Food reactions reported by parents were not convincing of FA in 15 cases for the following reasons: headache, one; isolated vomiting, one; isolated rash delayed beyond 2 h, two; isolated abdominal pain, three; convincing symptoms but only one reaction with symptoms delayed beyond 2 h, two; and symptoms suggestive of lactose intolerance, five.

Twenty-five children had history of reactions that were convincing of FA resulting in a FA rate of 5.5% (95% CI, 3.6–7.9). Of these, 2% were aged 5 years, 8% were aged 10 years and 7% were aged 15 years (P < 0.05). Children with FA were more frequently male than in the complete sample (68% vs. 54%), but this difference was not significant. The male predominance observed among FA cases diminished with age: 100%, 73%, and 58% in children attending kindergarten, 5th grade, and 9th grade, respectively. However, this trend was not significant (P = 0.46). A total of 22 children with FA (88%) were reported by their parents to suffer from allergic diseases other than FA. These children, when compared to children without FA, were more frequently reported to have asthma (20% vs. 7%, P = 0.02) and atopic dermatitis (32% vs. 13%, P = 0.01), but not allergic rhinoconjunctivitis (36% vs. 25%, P = 0.24). Previous studies have shown that children with FA are born more frequently in autumn/winter months than spring/summer months. 14,15 In our complete sample of 455 children, no seasonal differences in month of birth were observed (autumn/winter 53%, spring/summer 47%, P = 0.32). However, in children with FA, a higher, but not significant, rate was born in autumn and winter months compared to spring and summer months (64% vs. 36%, P = 0.22).

In children labelled as food allergic, the mean number of reactions in the FA cases was four (range, 1–30), 36% of the children suffered from allergy to multiple foods. Foods most frequently reported among the 25 FA cases were walnut (24%), peanut (20%), egg (16%), chocolate (16%), avocado

| Table 1 Demographic and clinical characteristics of the study population (n = 455). |
|---------------------------------|--------|--------|
| **Sex, female** | n (%) | |
| **School grade** | | |
| Kindergarten | 132 (29) | |
| 5th grade | 159 (35) | |
| 9th grade | 164 (36) | |
| **Season of birth** | | |
| Autumn/winter | 241 (53) | |
| Spring/summer | 214 (47) | |
| **Known allergic diseases** | | |
| Allergic rhinoconjunctivitis | 114 (25) | |
| Atopic dermatitis | 59 (13) | |
| Asthma | 32 (7) | |
| Food allergy | 27 (6) | |
| Insect sting allergy | 18 (4) | |
| Drug allergy | 9 (2) | |
(16%), banana (16%), and shellfish (12%). Estimated prevalence rates for FAs of Chilean school-aged children are shown in Table 2 and Fig. 3.

Reported symptoms were mostly hives (60%), erythema (48%), swelling (44%), and abdominal pain (32%). Severe symptoms were rarely reported: 4% trouble breathing and 4% syncope. Eight children (32%) were admitted to the emergency department because of the FA reactions and were treated mostly with antihistamines and corticosteroids. Twelve children (48%) had episodes that by history met the definition of anaphylaxis, but none received epinephrine during emergency visits. A total of 13/25 parents (52%) sought outpatient medical attention because they believed their child suffered from FA. Of these, 70% were diagnosed with FA by a physician and were instructed to avoid ingestion of the causative food. However, no child was recommended to carry an epinephrine autoinjector and none of the FA children ever had an autoinjector.

Discussion

This is the first population-based epidemiologic study to evaluate FA prevalence in Chile. We observed that about 1 in 20 school-aged Chilean children has a FA according to parental report and a detailed FA clinical questionnaire, which corresponds to an estimated 344,000 children nationwide. Our prevalence estimates are consistent with international prevalence reports that show a range of 3–35% in general population and an estimated 12% in children. Most studies on the epidemiology of FA have been carried out in developed countries and to the best of our knowledge, only one population-based study has previously evaluated FA in a Latin-American country.

Risk factors of FA identified in this study were similar to that in previous reports. We observed a significant association of FA with atopic dermatitis and asthma, although we did not inquire about the sequence of onset of these diseases. Due to previous reports of an effect of season of birth on the development of FA in children, we analyzed whether this was present in our sample. We observed an important, but not significant, trend of higher rate of food allergic children being born in autumn/winter compared with spring/summer seasons, similar to that reported in the United States and Australia. Further studies with a larger sample of children with FA are needed to further evaluate this finding. Younger age is usually a risk factor for immediate hypersensitivity FA. Surprisingly, in our study we observed a higher rate of FA in older children (i.e. 10- and 15-year-old) than in children aged five years. However, this study was not powered to evaluate prevalence in the different age groups and thus; this finding should be interpreted with caution.

FA is reported to be the main cause of anaphylaxis in childhood. In our study, about one half of the children with FA had history of reactions that were compatible with anaphylaxis. Strikingly, none of the affected children were treated with epinephrine during episodes despite the fact that 32% were admitted to an emergency department, where most received treatment with corticosteroids and/or antihistamines. Furthermore, over 50% of the FA-affected children were seen by a physician because of parental belief of FA, although most of them were diagnosed with FA, none of them were prescribed an epinephrine autoinjector or were educated in its use. Our study urgently addresses the need to educate health personnel in Chile regarding the risks of FA and the proper treatment of acute food allergic reactions.

Using a two-stage survey methodology we were able to distinguish well which foods caused recurrent symptoms in children that were likely to occur from causes different than FA (most frequently milk and chocolate), from foods that were likely culprits of immediate hypersensitivity reactions. This study found that the foods most frequently causing FA in Chilean school-children were walnut and peanut, with rates of 1.3% and 1.1% respectively. Other foods reported include common food allergens such as egg, shellfish, and fish, but also allergens less commonly reported in the literature such as avocado and banana. Allergy to peanut and walnut have been reported to be the main cause of fatal anaphylactic reactions to foods, causing 90% of demises in a US-based series of 32 cases. In this series, fatal reactions occurred mostly in adolescents and young adults who were known to have a prior history of FA to the food that caused the fatal reaction. In the same report it is noted that most had asthma and most did not have epinephrine available for use at the time of the reaction, two risk factors also present

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Estimated food-specific allergy rates in Chilean school-aged children.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>Rate (95% CI)</td>
</tr>
<tr>
<td>Walnut</td>
<td>1.3 (0.5–2.7)</td>
</tr>
<tr>
<td>Peanut</td>
<td>1.1 (0.4–2.4)</td>
</tr>
<tr>
<td>Egg</td>
<td>0.9 (0.3–2.0)</td>
</tr>
<tr>
<td>Avocado</td>
<td>0.9 (0.3–2.0)</td>
</tr>
<tr>
<td>Banana</td>
<td>0.9 (0.3–2.0)</td>
</tr>
<tr>
<td>Shellfish</td>
<td>0.7 (0.2–1.7)</td>
</tr>
<tr>
<td>Milk</td>
<td>0.4 (0.07–1.4)</td>
</tr>
<tr>
<td>Citrus fruits</td>
<td>0.4 (0.07–1.4)</td>
</tr>
<tr>
<td>Wheat</td>
<td>0.2 (0.01–1.0)</td>
</tr>
<tr>
<td>Fish</td>
<td>0.2 (0.01–1.0)</td>
</tr>
</tbody>
</table>

Figure 3 Estimated prevalence rates for food allergies of Chilean school-aged children.
in our FA population. The rates of FA to peanut and walnut reported in our study closely approach the population-based prevalence rates of developed countries where these allergies constitute an important public health concern, such as the United States and Canada. These high rates are cause for serious concern, particularly when linked to the poor rates of epinephrine use in the population and local emergency departments. Thus, education on FA recognition and management is essential to improve diagnosis and treatment of this condition in Chile. This should not only be a primary concern of medical schools, but also among practicing physicians with special emphasis on emergency departments, since programmes and public policies aiming to educate clinicians and the general population about FA and anaphylaxis are currently lacking in Chile and the food industry is not compelled to warn against components that may trigger severe allergic reactions. However, recently created patient support groups together with immunologists have been actively advocating in Chilean media and government to ensure proper awareness and treatment for affected patients.

To establish the prevalence of FA in childhood is of paramount public health importance, particularly in developing countries where there are little data. However, the true prevalence of FA has been difficult to establish worldwide for multiple reasons. These include the fact that more than 170 foods have been reported to cause IgE-mediated reactions, changes in the incidence and prevalence of FA have been observed over time with a likely increase over the past decades, and that studies on FA epidemiology and natural history are difficult to compare due to study design and variations in the definition of FA. Rona et al. performed a meta-analysis on the prevalence of FA and reported a pooled overall prevalence of self-reported FA of 12% in children, a result that was far lower (3%) when symptoms of FA were accompanied by demonstration of an immune-mediated mechanism either by skin prick test, serum IgE or oral food challenge.

The main limitation of our study is that our data are based on parental report, and were not confirmed by more specific diagnostic studies. As mentioned previously, it is widely recognised that the use of self-report to evaluate the prevalence of FA has been found to overestimate the real prevalence of the disease. The best way to evaluate the prevalence of FA is by designing studies that include the use of oral food challenge in subjects with probable FA, as oral food challenge has been recognised as the diagnostic gold standard in this disease. Nonetheless, we believe that the use of a two-stage methodology with questionnaires previously used in other large studies and a clear definition of “convincing” food-related allergic reaction, allowed us to obtain a conservative and more accurate estimate of FA prevalence in Chilean school-aged children. FA questionnaire responses may be affected by additional sources of bias such as recall bias and non-response bias. Although it is impossible to completely control recall bias when assessing history of food allergic reactions, the use of a systematic extended questionnaire by telephone interview should reduce its effect. Another limitation of our study was that it included only private schools of Santiago, although geographically representative of neighbourhoods with different socioeconomic status. Due to a prolonged strike in the Chilean public school system during the study period, inclusion of public schools was not possible. One of the strengths of our study is the high response rate and low loss to follow-up rates, minimising possible non-response bias.

In conclusion, the present study is the first to report the prevalence of FA in Chile. We observed that peanut and walnut are currently the main causative foods involved in FA, approaching rates similar to those of developed countries. Education regarding the proper recognition and management of acute food-induced allergic reactions in healthcare personnel and the general population seems urgent, given the results of this study.

Ethical disclosures

Protection of human and animal subjects. The authors declare that no experiments were performed on humans or animals for this investigation.

Confidentiality of data. The authors declare that they have followed the protocols of their work centre on the publication of patient data and that all the patients included in the study have received sufficient information and have given their informed consent in writing to participate in that study.

Right to privacy and informed consent. The authors have obtained the informed consent of the patients and/or subjects mentioned in the article. The author for correspondence is in possession of this document.

Funding

This work was funded by an intramural grant of the Division of Pediatrics of the Pontificia Universidad Católica de Chile School of Medicine.

Conflicts of interest

The authors report no conflicts of interest regarding this study.

Acknowledgment

We would like to thank Dr. Scott Sicherer for kindly providing a previously reported food allergy survey questionnaire.

References

Un nuevo concepto de alergoide

Primer alergoide monomérico en comprimidos por vía sublingual

Desarrollado por Laboratorios Lofarma y comercializado por Laboratorios Diater

Lais®
SLIT con Alergoide

Composición
• Gramíneas salvajes
• Parietaria
• Olivo
• Ácaros

Ventajas
• Eficacia clínica
• Seguridad
• Mayor biodisponibilidad
• Menor degradación enzimática
1.- COMPOSICIÓN: Lais® es un tratamiento de inmunoterapia específica sublingual en comprimidos, constituido por un extracto alergénico químicamente modificado (alergoide monomérico), para el tratamiento de las afecciones alérgicas por alérgenos inhalantes: asma bronquial, rinitis, rinoconjuntivitis. 2.- FORMA FARMACÉUTICA Y CONTENIDO DEL ENVASE: Comprimidos para administración por vía sublingual. Los comprimidos se encuentran en blister, siendo estos blancos, redondos, ranurados y numerados en el lado opuesto a la ranura. Cada blister contiene 10 comprimidos. Lais® está formado por una presentación constituida por 30 comprimidos de 1000 UA. 3.- POSOLOGÍA Y FORMA DE ADMINISTRACIÓN: La posología con los comprimidos de 1,000 UA puede variar de 2 a 5 comprimidos por semana, según el criterio del médico. Para la terapia estacional (por ejemplo para los pólenes) se recomienda la ingesta de 1 comprimido al día, 5 veces por semana (por ejemplo: de lunes a viernes) antes y durante la estación de los pólenes. Para la terapia crónica (por ejemplo para los ácaros) se recomienda la ingesta de 1 comprimido al día, 2 veces por semana (por ejemplo: lunes y viernes) durante todo el año. En caso de interrupción el tratamiento hasta 2 semanas, se puede continuar con el mismo desde la última dosis tolerada; en caso de interrupción por más de dos semanas, consultar al médico, quien adecuará la posología. De todos modos, el médico podrá adecuar el esquema posológico de acuerdo con las necesidades terapéuticas del paciente. Realizar el tratamiento por un período de 3 a 5 años, según las indicaciones de su médico. Los comprimidos se colocan en la cavidad oral y se mantienen bajo la lengua hasta su completa disolución, que se produce en 1 o 2 minutos. Posiblemente, tomar los comprimidos sin alimentos. 4.- INDICACIONES. Lais® está indicado para el tratamiento de las afecciones alérgicas por alérgenos inhalantes: asma bronquial, rinitis, rinoconjuntivitis. 5.- CONTRAINDICACIONES: Como todos los medicamentos Lais® puede entrañar riesgo de reacciones, por lo que deben seguirse durante la duración del mismo las siguientes normas antes la aparición de cualquier reacción adversa, antes de proseguir con el tratamiento consultar con el médico prescriptor. Es fundamental el seguimiento periódico que el especialista le haya indicado, al cual incumbe realizar las oportunas modificaciones en el tratamiento que el paciente requiera. 6.- PRECAUCIONES: No use Lais® si es alérgico (hipersensible) a cualquiera de los excipientes, si tiene graves enfermedades sistémicas (tumores, enfermedades autoinmunes, deficiencias inmunitarias, enfermedades inflamatorias crónicas e infecciones virales), si padece de enfermedades cardiorespiratorias (por ejemplo: insuficiencia cardiovascular, enfisema y bronquiectasia) o si tiene patologías en las que el uso de adrenalina está contraindicado. Consulte a su médico antes de empezar a usar Lais®. El esquema de dosificación de la inmunoterapia específica siempre debe ser individual. El médico establecerá las dosis y la frecuencia de las ingestas adaptándolas a la evolución de la enfermedad. Para la fase de inducción y durante el tratamiento. El esquema posológico se presenta únicamente a modo de orientación. En caso de aparición de estados febriles gripales o infecciones en las vías respiratorias, se recomienda consultar al médico para una eventual adecuación posológica. En caso de necesidad de aplicar vacunas antivirales o antibacterianas, administrarlas después de una semana de la interrupción del tratamiento. La continuación de la inmunoterapia puede requerir 2 semanas después de la vacunación. Evitar el esfuerzo físico intenso en las horas inmediatamente posteriores a la administración del tratamiento. 7.- INTERACCIONES: No se han descrito. 8.- ADVERTENCIAS: Uso de Lais® con otros medicamentos; no se conocen interacciones con otros fármacos. Uso de Lais® con alimentos, bebidas y alcohol; evitar la ingesta de alcohol en las horas inmediatamente posteriores a la administración del tratamiento. Embarazo, lactancia y fertilidad; durante el embarazo no debe iniciarse una inmunoterapia específica, sobretodo por la limitada posibilidad de utilizar fármacos. En caso de que la suspensión de la inmunoterapia específica constituya un riesgo para la paciente, la decisión acerca de continuar con el tratamiento debe ser tomada por el médico especialista basándose en una cuidadosa evaluación del riesgo al que se sometería a la paciente no protegida por la inmunoterapia. La ingesta del producto durante el período de lactancia no está contraindicada. Conducción y uso de máquinas; al igual que otros tipos de medicamentos Lais® puede provocar una sensación de cansancio tras la ingesta. Lo que puede redundar en una disminución de la atención de la persona que puede incidir en la capacidad de conducir vehículos o de usar maquinarias. Lais® contiene lactosa. 9.- REACCIONES ADVERSAS: Al igual que todos los medicamentos Lais® puede producir efectos adversos, aunque no todas las personas los sufren. Puesto que el principio activo del producto es un alérgeno modificado químicamente (alergoide monomérico), las reacciones adversas durante el tratamiento son muy inusuales. Sin embargo, no se puede excluir la aparición de rinitis, urticaria, prurito, disnea general de evolución moderada y reacciones retardadas algunas horas después de la ingesta. La eventual aparición de reacciones adversas locales (por ejemplo: prurito bucal o labial) y/o sistémicas, durante la inmunoterapia específica, deberá comunicarse inmediatamente al médico, quien adecuará el esquema posológico e indicará una terapia antialérgica adecuada, según la gravedad del cuadro clínico (antihistamínicos por vía oral y/o parenteral, corticosteroides por vía oral y/o parenteral, agonistas β2-adrenerginicos, adrenalina s.c.). Además, el paciente debe informar al médico acerca de la aparición de cualquier otra efecto adverso durante el tratamiento y que no esté descrito en el prospecto. 10.- CONSERVACIÓN: Mantener este medicamento fuera de la vista y del alcance de los niños. Conservación: Este medicamento no requiere condiciones especiales de conservación. Conservar en el embalaje original. No utilice Lais® después de la fecha de caducidad que aparece en la caja después de CAD. La fecha de caducidad es el último día del mes que se indica. Los medicamentos no se deben tirar por los desagües ni a la basura. Deposite los envases y los medicamentos que no necesita en el Punto Sígure de la farmacia. En caso de duda pregunta a su farmacéutico cómo deshacerse de los envases y de los medicamentos que no necesita. De esta forma, ayudará a proteger el medio ambiente. 11.- CADUCIDAD: No utilice después de la fecha de caducidad indicada en el embalaje. 12.- FABRICANTE: El responsable de la Fabricación es LOFARMA S.p.A.; Viale Cassala 40, 20143 Milán – Italia y el responsable de la comercialización es DIATER Laboratorio di Diagnostici e Applicazioni Terapeutiche S.A.; Avenida Gregorio Peces Barba, nº 2; Parque Tecnológico de Leganés, 28918 Leganés (Madrid). Este prospecto ha sido revisado en Julio 2013.