Math anxiety, a hierarchical construct: Development and validation of the Scale for Assessing Math Anxiety in Secondary education

Lara Yáñez-Marquina*, Lourdes Villardón-Gallego
Faculty of Psychology and Education, University of Deusto, Avda. de las Universidades 24, 48007 Bilbao, Spain

ARTICLE INFO
Article history:
Received 7 September 2017
Accepted 3 October 2017

Keywords:
Mathematics anxiety
Secondary education
Mathematics education
Confirmatory factor analysis
Scale

ABSTRACT
Secondary students’ low achievement and engagement in mathematics is known to relate closely to their math anxiety. Despite the international body of research, the theoretical conceptualization of the construct math anxiety is still debated, showing strong discrepancies regarding its factor structure. Therefore, the aim of this paper is to develop and validate a new instrument, called Scale for Assessing Math Anxiety in Secondary education (SAMAS), by testing several models through confirmatory factor analysis. Data were collected from 563 secondary students, with an average age of 13.96 (SD = 1.09) years. Several models for the construct were tested through confirmatory factor analysis. The results largely confirmed that the hierarchical structure showed the best fit to the data ($\chi^2(166, N = 563) = 361.22; \text{RMSEA} = .046; \text{SRMR} = .045; \text{NNFI} = .94; \text{CFI} = .95$), resulting in the psychometrically sound 20-item SAMAS, wherein math anxiety comprises three underlying factors.

© 2017 Sociedad Española para el Estudio de la Ansiedad y el Estrés - SEAS. Published by Elsevier España, S.L.U. All rights reserved.

Ansiedad matemática, un constructo jerárquico: desarrollo y validación de la Scale for Assessing Math Anxiety in Secondary education

RESUMEN
El bajo rendimiento y dedicación de los estudiantes de secundaria a las matemáticas está estrechamente relacionado con la ansiedad matemática. A pesar de la investigación internacional, la conceptualización teórica del constructo ansiedad matemática es todavía debatida, mostrando fuertes discrepancias relativas a su estructura factorial. Por tanto, el objetivo de este estudio es desarrollar y validar un nuevo instrumento, denominado Scale for Assessing Math Anxiety in Secondary Education (SAMAS), para el que se analizan diferentes modelos mediante Análisis Factorial Confirmatorio. La muestra estuvo compuesta por 563 estudiantes, con una edad media de 13.96 (DE = 1.09) años. Los resultados ampliamente confirmaron que la estructura jerárquica fue la que arrojó el mejor ajuste del modelo ($\chi^2(166, N = 563) = 361.22; \text{RMSEA} = .046; \text{SRMR} = .045; \text{NNFI} = .94; \text{CFI} = .95$), resultando en un instrumento psicométricamente robusto de 20 ítem, compuesto por 3 factores subyacentes.

© 2017 Sociedad Española para el Estudio de la Ansiedad y el Estrés - SEAS. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.

Introduction
In recent years, math anxiety has received increasing interest because of its adverse effects on the learning and mastery of Mathematics from an early age. It is defined as feelings of tension or worries that hinder the successful completion of tasks involving manipulation of numbers and mathematical reasoning not only in school settings, but also in a wide range of daily life situations (Richardson & Suinn, 1972).

Although it has been shown to exist across all age ranges, there is growing evidence that math anxiety has its roots in upper elementary school and increases in severity from 5th through 12th grade,
reaching peak levels in 14- to 16-year-old students (e.g., Legg & Locker, 2009; Scarpello, 2007). In attempts to summarize these cor-
relational studies, Hembree (1990) and Ma (1999) conducted one
meta-analysis each. The results underscored estimated correlation
values of −.27 to −.34 for the previously mentioned age group (that
is, secondary students).

Its detrimental impact during this period leads to a math-related
avoidance pattern in adulthood, which manifests in a wide range
of behavioral symptoms such as trying not to use mathematical
reasoning whenever it is possible. This troubling pattern, in turn,
results in an adverse effect on individuals’ career choices and
long-term professional success (e.g., Ashcraft & Krause, 2007; Krinzinger,
Kauffman, & Willmes, 2009), as well as poorer mathematical skills
and a continuous struggle to perform simple numerical tasks,
namely addition or subtraction (Ashcraft & Ridley, 2005).

In addition, when analyzing its origin, several authors have
found that math anxiety is a specific type of anxiety related to,
but distinct from, both general anxiety trait and test anxiety (Wu,
Willcatt, Escovar, & Menon, 2013). These findings highlight the
non-intellectual nature of math anxiety, a hypothesis which was
originally proposed in theoretical terms (Ashcraft & Krause, 2007;
Beilock & Carr, 2005; Beilock, Gunderson, Ramirez, & Levine, 2010),
but has been recently proven in the field of neurocognitive research
(Young, Wu, & Menon, 2012).

Despite its relevance, knowledge about the theoretical concep-
tualization of math anxiety is still inconclusive. A literature review
of the existing measures for assessing math anxiety (see Table 1)
drawn from peer-reviewed articles yielded no agreement in the
dimensionality of the construct.

When reviewing the studies summarized in Table 1, it could be
concluded that: (a) researchers do not agree on the factor structure
for math anxiety; (b) some instruments targeted at measuring math
anxiety also include some factors related to other constructs (e.g.,
attitudes toward math); (c) the great majority of existing instru-
ments have been psychometrically supported by exploratory factor
analyses, with still a scarcity of confirmatory consistency; and (d)
there is a general lack of peer-reviewed tools for assessing math
anxiety among secondary students in Spanish-speaking contexts.

Therefore, based on previous literature and theoretical consid-
erations, in the present research math anxiety is defined based on
Hopko’s (2003) classification and previous studies on the construct,
whereby two factors are proposed as critical elements: anxiety
about the process of learning mathematics and anxiety toward
math evaluation. Aiming at completing its factor structure, a third
factor is proposed as relevant in explaining the construct: anxiety
toward everyday life’s math-related tasks, which is in line with the
widely acknowledged definition by Richardson and Suinn (1972).
Accordingly, math anxiety is conceptualized to have three latent
factors:

- **Everyday life’s math anxiety** encompasses a broad range of
 affective responses to students’ everyday situations that require
 mathematical reasoning. For example, a student may feel nervous
 about having to do a mental calculation to estimate the total price
 of a purchase.

- **Math learning anxiety** includes affective responses that a math
 student may experience during different situations of the math
 learning process that take place in the scholar setting. For example,
 the feeling of worry when having to solve a math problem.

- **Math test anxiety** refers to feelings a math student may experi-
 ence when either preparing or doing a math test. This dimension is
 considered different, although related to, the previous one. In fact,
 it is conceivable that a student enjoys the subject of Mathematics
 but feels nervous about doing a math test.

Consequently, based on the limitations drawn from the lit-
erate review on existing instruments and the theoretical
conceptualization exposed above, the main goal of the present
study was to develop and validate, by means of confirmatory anal-
yses, the Scale for Assessing Math Anxiety in Secondary education
(SAMAS), wherein math anxiety comprises three underlying fac-
tors: everyday life’s math anxiety, math learning anxiety and math
test anxiety.

Method

Participants

A random sample from six schools was extracted, and the cluster
sampling method was then applied. That is, within those selected
schools, all secondary student groups from second and fourth
grades were considered eligible for the study.

With this procedure, the research sample consisted of 563 sec-
dondary students (39.3% females, 60.7% males) from 36 different
classes from the province of Biscay (Basque Country Autonomous
Region, Spain). The average age of the participants was 13.96
(SD = 1.09) years, ranging from 12 to 16. As regards the educational
level, 47.42% were enrolled in second grade and 52.58% in fourth
grade.

Instruments

Scale for Assessing Math Anxiety in Secondary education (SAMAS). It
comprised three underlying factors: everyday life’s math anxiety
(e.g., “Me pongo nervioso/a al calcular el precio total de lo que he
comprado” [I get nervous when calculating the total price of what
I bought]), math learning anxiety (e.g., “Me pongo nervioso/a cuando
toca clase de matemáticas” [I get nervous whenever it is math’s
turn]) and math test anxiety (e.g., “Me pongo más nervioso/a en los
controles o exámenes de matemáticas que en los controles o exámenes
de otras asignaturas” [I get more nervous during the math tests than
during the exams of other subjects]). The final version consisted of
20 items (see Appendix 1) on a continuous response scale ranging
from 0 (Strongly disagree) to 10 (Strongly agree). Its development,
as well as psychometric properties, is detailed in the present study.

Math performance. It was assessed by students’ score on a math
curriculum-based test, entirely based on the widely validated diag-
nostic tests (Gobierno Vasco, 2010) and PISA assessment (Gobierno
Vasco, 2011). The former includes basic mathematical contents
across the first cycle of Compulsory Secondary Education; whereas
the latter does across the second cycle. The time limit to complete
the test is 40 min in both cases.

For their correction, the guidelines given by their authors are
applied, obtaining a single cumulative score, based on the sum of
correct answers, which was then transformed to a standard score
ranging from 0 to 10.

A sociodemographic questionnaire gathered participants’ per-
sonal background information: age, sex and secondary grade in
which they are enrolled.

Procedure

Once the research project was approved by the Ethics Com-
mittee of the University of Deusto, the principals from the selected
schools were contacted via email and informed of the nature of the
research. They, in turn, presented it for approval at a staff meeting.

After written permission was granted by the schools, a cover letter
was sent to students’ parents or guardians to inform them of the
purpose of the study and explain that collected data were going to
be dealt with confidentiality and used solely for research purposes.

In addition, prior to participation, students were also informed
of the general purpose of the study and of their rights as participants,
stressing that their participation was anonymous and voluntary.
Table 1

Instruments for assessing math anxiety.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Dimensions/Items</th>
<th>Psychometric evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics Anxiety Rating Scale (MARS; Richardson & Suinn, 1972)</td>
<td>A 98-item scale with no dimensions.</td>
<td>EFA Test–retest reliability: .78 and .85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cronbach’s alpha: .97 (N = 397)</td>
</tr>
<tr>
<td>Anxiety Toward Mathematics Scale (ATMS; Sandman, 1980)</td>
<td>A set of 6 subscales, resulting in a total of 48 items: perception of Mathematics teachers, value of Mathematics, self-concept in Mathematics, math anxiety, enjoyment of Mathematics, motivation in Mathematics.</td>
<td>EFA Reliability (for the subscales): .69–.89 (N = 5034)</td>
</tr>
<tr>
<td>Revised version of the Math Anxiety Rating Scale (MARS-R; Plake & Parker, 1982)</td>
<td>A 24-item scale with two underlying factors: learning math anxiety (16) and math evaluation anxiety (8).</td>
<td>EFA (PAF) Cronbach’s alpha: .98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correlation with the full MARS scale: .97</td>
</tr>
<tr>
<td>Math Anxiety Rating Scale–Adolescents (MARS-A; Suinn & Edwards, 1982)</td>
<td>A 98-item scale with two underlying factors: numerical anxiety (89) and mathematics test anxiety (9).</td>
<td>EFA Split-half reliability: .90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cronbach’s alpha: .96 (N = 1313)</td>
</tr>
<tr>
<td>Math Anxiety Questionnaire (MAQ; Wigfield & Mece, 1988)</td>
<td>An 11-item scale with two underlying factors: negative affective reactions (7) and worry (4).</td>
<td>EFA (PCA with orthogonal and oblique rotations) + CFA Cronbach’s alpha: Negative affective reactions (α = .82), worry (α = .76) (N = 564).</td>
</tr>
<tr>
<td>Abbreviated version of MARS (A-MARS; Alexander & Martray, 1989)</td>
<td>A 25-item scale with three underlying factors: math test anxiety, numerical test anxiety and math course anxiety.</td>
<td>EFA Two week test–retest reliability: .86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cronbach’s alpha: Test math anxiety (α = .96), numerical test anxiety (α = .86), math course anxiety (α = .84) (N = 517).</td>
</tr>
<tr>
<td>Mathematics Anxiety Survey (MAXS; Gierl & Bisanz, 1995)</td>
<td>The full scale comprises two subscales: test and problem solving anxiety.</td>
<td>EFA Cronbach’s alpha for the subscales: .70–.89</td>
</tr>
<tr>
<td>Abbreviated Math Anxiety Scale (AMAS; Hopko, Mahadevan, Bare, & Hunt, 2003)</td>
<td>A 9-item scale with two underlying factors: learning math anxiety (5) and math evaluation/test anxiety (4).</td>
<td>EFA + CFA Test–retest reliability: .85 Cronbach’s alpha: .90 (N = 1239).</td>
</tr>
<tr>
<td>Cuestionario para medir la ansiedad hacia las Matemáticas (Muñoz & Mato, 2007)</td>
<td>A 24-item scale with five underlying factors: test anxiety (11), temporal anxiety (4), anxiety toward understanding mathematical problems (3), numerical anxiety (3), and anxiety toward everyday life’s mathematics (3).</td>
<td>EFA Cronbach’s alpha: .93 Test anxiety (α = .92), Temporality anxiety (α = .96), Anxiety toward understanding mathematical problem (α = .91), Numerical anxiety (α = .95), Anxiety toward everyday life’s mathematics (α = .80) (N = 1220).</td>
</tr>
<tr>
<td>Mathematics Anxiety Scale for Students (MASS; Ko & Yi, 2011)</td>
<td>A 65-item scale with four underlying factors: nature of mathematics (22), learning strategy (21), test/performance (9) and environment (13).</td>
<td>PCA + CFA Cronbach’s alpha: .77 Nature of Mathematics (α = .76) Learning strategy (α = .73), Test/Performance (α = .73), Environment (α = .70) (N = 2339).</td>
</tr>
<tr>
<td>Mathematics Anxiety Scale (MAS; Mahmood & Khatoon, 2011)</td>
<td>The 14-item scale consists of one homogeneous factor with 7 negatively worded items and 7 positively worded items.</td>
<td>EFA Split-half reliability: .89 Cronbach’s alpha: .87 (N = 250).</td>
</tr>
<tr>
<td>Scale for Early Mathematics Anxiety (SEMA; Wu, Barth, Amin, Malcare, & Menon, 2012)</td>
<td>A 20-item scale with two underlying factors: numerical processing anxiety (9) and situational and performance anxiety (11).</td>
<td>EFA (PCA and VR) Split-half reliability: .77 Cronbach’s alpha: .87 (N = 162).</td>
</tr>
</tbody>
</table>

Note. PCA = Principal Component Analysis, VR = Varimax Rotation, PAF = Principal Axis Factoring.
No incentives (e.g., academic credits) were offered in exchange for participation.

Data were collected by the first author and a purpose-trained assistant and the instruments were administered collectively in the students’ usual classrooms in the absence of the teacher, taking 55 min to complete. Either the author or the trained assistant was in the classroom the entire time to explain the procedure. No student withdrew from participation during the instruments administration.

Data analysis

After obtaining the initial pool of items for the new instrument, a review panel of nine experts on research and didactics was established to provide evidence about content validity. They were asked to classify each item within just one dimension, and then rate its accuracy and clarity of writing on a scale ranging from 0 to 10. They were also prompted to send comments or suggestions for improvement if considered necessary. Results were analyzed according to the criteria of (high if $M \geq 7.50$; acceptable if 2.50 $\leq M < 7.50$; low if $M < 2.50$) and standard deviation (good if $SD \leq 1.00$; acceptable if 1.00 $< SD \leq 1.50$; low if $SD > 1.50$) for both relevance and clarity of writing, and response frequency (necessary, $f \geq .78$, meaning that at least 7 out of 9 experts classify the item within the theoretical dimension). In addition, the Content Validity Index (CVI) was estimated for each item, setting a value of .78 as the minimum desirable cut-off for this coefficient (Lynn, 1986).

Then, prior to the confirmatory factor analysis (CFA), no outliers were identified and all cases were retained for subsequent analysis. The univariate normality obtained for all variables, the low missing values rate (<5%) estimated in dataset and the large sample size used in the study validated the implementation of Maximum Likelihood (ML) estimation. Due to the multivariate non-normality of data, the parameters of the CFA were estimated using Satorra–Bentler robust corrections. Items were forced to load on their hypothesized factors. The variances for the first observed indicator of each latent variable were fixed to 1, and the variances for all error weights and the remaining parameters were freely estimated (Ullman, 2006).

Three a priori models for assessing math anxiety were subjected to CFA: firstly, a unidimensional model in which all items were indicators of a single math anxiety factor; secondly, a three-factor model in which the items were assumed to measure three factors (namely, everyday life’s math anxiety, math learning anxiety and math test anxiety); thirdly, a hierarchical model comprising a first order factor (everyday life’s math anxiety) and a second-order factor (on which both math learning anxiety and math test anxiety loaded on a second-order factor referring to academic math anxiety).

Several fit indices and desirable cut-offs were used to judge the adequacy of the CFA (Hair, Black, Babin, & Anderson, 2010): a) the S-B2/df statistics should be lower than 3.0; b) the Root Mean Squared Error of Approximation (RMSEA), with the relative 90% confidence interval, should be lower than .08 (good) or .06 (excellent); c) the Standardized Root Mean Square Residual (SRMR) should be lower than .08; d) the Non-Normed Fit Index (NNFI) should be greater than .90 (good) or .95 (excellent); and e) the Comparative Fit Index (CFI) should be greater than .90 (good) or .95 (excellent). In addition, the Akaike information criterion (AIC) was used to compare the factor structures with different estimated parameters in such a way that lower values indicated higher parsimony for the model.

Discriminant validity was examined through the inter-factor correlations, and internal consistency was assessed with the Composite Reliability (CR) and Cronbach’s coefficient (α). To interpret the scores, values above .50 for the former were considered adequate (Fornell & Larcker, 1981) and values above .70 for the latter were considered acceptable (Nunnally, 1978).

Finally, convergent validity was assessed with the Pearson correlation coefficients between math anxiety and other construct referred in literature (i.e., math performance). According to Cohen’s (1988) criteria, values of r around .10 are considered to be small correlations, r around .30, moderate; and r around .50, high.

Results

Initial pool of items and evidence of content validity

The development process for the new instrument SAMAS began by specifying both the construct math anxiety and its underlying factors. As previously noted, in the present study three latent factors are taken as the basis for its subsequent conceptualization: everyday life’s math anxiety, math learning anxiety and math test anxiety.

Thus, as recommended by AERA, APA, and NCME (2008), existing instruments were firstly considered for the development of a preliminary pool of items. As it was necessary to translate the great majority of existing instruments to Spanish, the guidelines by Muñiz, Elouza, and Hambleton (2013) were followed. Redundant items were removed and newly written items were developed for the proposed dimensions. As a consequence, a total of 32 items were obtained and sorted as follows: everyday life’s math anxiety (13), math learning anxiety (13) and math test anxiety (6).

As part of the content validity process, results from the review panel indicated that overall, items were positively evaluated in terms of accuracy and clarity of writing and were categorized into just one dimension. On the half of all statements (62.5%), the CFI obtained the maximum score, and on one-fifth, approximately, of all statements (18.5%), the CFI ranged from the threshold of .78 to 1. Only six items did not meet the cut-off. These were discarded and the remaining 26 items, which comprised the first version of SAMAS, were distributed as follows: everyday life’s math anxiety (11), math learning anxiety (9) and math test anxiety (6).

Confirmatory factor analysis: evidence of construct and discriminant validity

Table 2 shows the goodness-of-fit indices of the three CFA models for assessing math anxiety. The single factor model did not reach adequate values with both RMSEA and SRMR above .06, and both NNFI and CFI below .95. The three-factor model showed an overall adequate fit-to-data. With the exception of NNFI, the remaining indices met the cut-offs. However, the three factors were strongly correlated ($r = .53–.85$). Specifically, the strong correlation between math learning anxiety and math test anxiety ($r = .85$) suggested potential model redundancy and casted doubts on the discriminant validity between these two factors. The hierarchical structure, which attempts to model the strong correlations among the three first-order factors by loading math learning anxiety and math test anxiety on a second-order factor called academic math anxiety, was a significantly better fit-to-data, compared to the unidimensional

<table>
<thead>
<tr>
<th>CFA model</th>
<th>S-B2/df</th>
<th>RMSEA (90% CI)</th>
<th>SRMR</th>
<th>NNFI</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single factor</td>
<td>1.405</td>
<td>.029 (.015–.040)</td>
<td>.072</td>
<td>.93</td>
<td>.81</td>
</tr>
<tr>
<td>Three-factor model</td>
<td>1.796</td>
<td>.029 (.016–.042)</td>
<td>.073</td>
<td>.90</td>
<td>.87</td>
</tr>
<tr>
<td>A hierarchical model</td>
<td>2.097</td>
<td>.029 (.016–.043)</td>
<td>.073</td>
<td>.93</td>
<td>.87</td>
</tr>
</tbody>
</table>

Note. S-B2/df=Satorra-Bentler Chi-square, df=degrees of freedom, RMSEA=Root Mean Square Error of Approximation, SRMR=Standardized Root Mean Square Residual, NNFI=Non-Normed Fit Index, CFI=Comparative Fit Index, AIC=Akaike’s information criterion.
model ($\Delta S-B_{1}^{2}=605.96, \Delta df=4, p<.001$). Therefore, the second-order factor model emerged as the preferred structure.

To enact modifications representing an improvement on the final fit, the hierarchical model was further inspected through the standardized residual covariance scores, the standardized factor loadings and the conceptual relevance of the items. Based on these considerations, six items were discarded. The re-specified model (see Fig. 1) yielded good values for the goodness-of-fit indices ($S-B_{1}^{2}(166, N=563)=361.22, p<.001; \text{RMSEA} (90\% \text{IC})=.046 (0.039–0.053); \text{SRMR}=.045; \text{NNFI}=.94; \text{CFI}=.95$).

All standardized factor loadings were statistically significant and all three first-order factors strongly loaded on the second-order factor ($p<.05$). Specifically, the standardized factor loadings for the everyday life's math anxiety ranged from .51 to .78; from .62 to .72 for math learning anxiety factor; and from .61 to .79 for math test anxiety factor. Additional properties of the final 20-item SAMAS were assessed with the Composite Reliability (CR) and Cronbach's alpha (α) of each factor. The reliability analyses showed good internal consistency for everyday life's math anxiety (CR = .79, $\alpha = .83$), math learning anxiety (CR = .83, $\alpha = .86$) and math test anxiety (CR = .78, $\alpha = .84$) factors.

Evidence of convergent validity

Moderate negative correlations were found between math learning anxiety and math performance ($r = -.38, p < .01$) and between math test anxiety and math performance ($r = -.37, p < .01$); whereas a low correlation was found between everyday life's math anxiety and math performance ($r = -.16, p < .01$).

Discussion

Research on math anxiety is undoubtedly contingent on the psychometric properties of the measures for assessing the construct. In this context, a review on the existing instruments warrants cautious considerations about the lack of agreement on the factor structure for math anxiety. Therefore, the main goal of this study is to develop and validate a new measure, called Scale for Assessing Math Anxiety in Secondary education (SAMAS), which attempts to furnish insights into the factor structure of math anxiety by suggesting three factors drawn from an integrative literature review: everyday life's math anxiety, math learning anxiety and math test anxiety.

Confirmatory analyses show that the best and most parsimonious structure is a hierarchical model, consisting of a two-order factor and a first-order factor. The former refers to academic math anxiety, and comprises both math test anxiety and math learning anxiety; whereas the latter refers to everyday life's math anxiety. Such structure for assessing math anxiety, although aligned with the widely acknowledged definition given by Richardson and Suinn (1972), has been first proposed in literature, contrary to two-factor (Hopko, Mahadevan, Bare, & Hunt, 2003; Wigfield & Meece, 1988) or four-factor (Ko & Yi, 2011) models tested through confirmatory approaches in previous research.

Regarding convergent evidence, negative moderate correlations were found between math learning anxiety and math performance, as well as between math test anxiety and math performance. Interestingly, the correlation between everyday life's math anxiety and math performance was smaller, which makes sense as it is the only factor referring to feelings of tension evoked in math-related situations outside the school setting. These results were in line with previous studies (e.g., Ho et al., 2000; Suinn & Edwards, 1982). To this respect, it is important to highlight the results of the meta-analyses conducted by Hembree (1990) and Ma (1999), who estimated correlations from -.27 to -.34 between math anxiety and math performance among secondary students. As a result, the Pearson's correlations obtained were appropriate compared to the results from previous studies considering the same constructs.

Despite the promising findings, there are also some limitations. First, data were collected using a cluster-sampling method, which means that the results are not entirely generalizable. Although the participating schools were previously selected via a simple random method and the resulting sample group was representative for the research purposes, larger samples from different sociodemographic contexts are needed to further assess the invariance of the factor structure. Second, this study provides evidence of good psychometric properties of the instrument but, likewise, it would be interesting to provide further evidence of validity by assessing the temporal stability.

Additionally, SAMAS has been initially developed for its use with secondary education participants. It would be highly interesting, therefore, to adapt and validate the scale with other populations such as, for example, primary education or college students. Indeed, since math anxiety experiences a deep change in the transition from upper elementary school to junior high school, investigating this turning point with psychometrically sound instruments would be of great relevance.

In conclusion, based on the reported results, the developed 20-item SAMAS can be used by educators or researchers as a little time demanding and psychometrically sound instrument for measuring and monitoring secondary education students’ levels of math anxiety in Spanish-speaking settings. Its use would allow detecting...
potential at-risk students and consequently, design and implement, as early as possible, strategies or methodologies aiming at alleviating detected levels of math anxiety, in general, or of a specific dimension, in particular. Indeed, the inclusion of a component encompassing feelings of tension in non-scholastic settings is considered to be a contribution in the present research, since to date only one instrument considered a similar component when defining the construct (Muñoz & Mato, 2007). However, not only the number of items in that scale appeared to be inadequate to yield strong psychometric properties, but also the validation process relied completely on exploratory techniques without any confirmatory consistency. Therefore, the hierarchical model largely confirmed in the present study emerges as a more comprehensive structure for explaining and measuring math anxiety, both in academic and non-academic settings.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

This research was funded by the University of Deusto Research Training Grants Programme 2013–2016 (University of Deusto, Bilbao).

Appendix 1.

Final version of the SAMAS.

Everyday life’s math anxiety	IT01	En una compra entre varias personas, me pongo nervioso/a al calcular cuanto tiene que poner cada uno
Math anxiety	IT02	Me pongo nervioso/a al calcular el precio total de lo que he comprado
Math anxiety	IT04	Me pongo nervioso/a cuando reviso el ticket de compra
Math anxiety	IT06	Cuando hacemos un bote común, me pongo nervioso/a al calcular cómo repartir lo que ha sobrado
Math anxiety	IT07	Me pongo tenso/a cuando tengo que calcular el precio final de un producto rebajado
Math anxiety	IT08	Me pongo nervioso/a al calcular qué me puedo comprar con la paga
Math anxiety	IT09	Cuando compro algo, me pongo nervioso/a al comprobar las ventajas
Math anxiety	IT10	When I buy something, I get nervous when checking the change
Math anxiety	IT11	Me pongo nervioso/a al hacer los deberes de Matemáticas
Math anxiety	IT12	I get nervous when the math homework consists of tricky problems
Math anxiety	IT13	Me pongo nervioso/a cuando resuelvo un ejercicio o problema en clase de Matemáticas
Math anxiety	IT14	I get nervous whenever it is math’s turn
Math anxiety	IT15	I get nervous when having to solve a problem or exercise in math class

References

Fennema, E., & Sherman, J. A. (1976). Fennema-Sherman Mathematics Attitudes Scales: Instruments designed to measure attitudes toward the learning of

