Heart rate of a professional bullfighter in training and real bullfight

Frecuencia cardiaca de un torero profesional en entrenamientos y corridas de toros

Dear Director:

The bullfighter’s professional activity is nowadays a professional field involving many hours of specific physical activity in trainings, rehearsals and during public performances. In fact, the professional standards of bullfighting entail the need for adequate physical preparation. To date, the study of professional bullfighters has been almost exclusively focused on neuromuscular injuries surgery and emergency medical treatment of bullfighters, and the research on the physiological demands of bullfighting is very limited, probably because of the difficulties of performing studies during a real bullfighting. This study analyzed the heart rate (HR) response of a professional bullfighter during his real activities.

A 23-year-old professional bullfighter volunteered to participate in this study. We recorded HR continuously in 24 situations with wild animals divided equally into three types of activity: training with wild cows, training with wild bulls and bullfight before an audience. Previously, the bullfighter underwent a maximal exercise test on a treadmill, to get maximum heart rate (MaxHR), aerobic threshold (AeT) and anaerobic threshold (AT). HR was recorded by means of Polar Team2Pro® (Polar, Finland) from the first contact with the animal until the last action. The device was programmed to obtain a value of HR every second. Recorded data were transferred to a personal computer (PC) for further analysis. A member of the research team, always the same one, put the heart rate monitor on the participant at the time of wearing the bullfighter suit, and simultaneously activating a timer (Casio Hs-3, Japan) and a camera (Sony A100, Japan) synchronized with the heart rate monitor. The study was approved by the Ethics Committee of the University of Oviedo, Spain.

As Table 1 and Fig. 1 show, the results registered in a maximal exercise stress test on a treadmill indicated a maximum heart rate of 184 bpm, with an aerobic threshold of 150 ppm (81.52% HRmax) and anaerobic threshold of 165 bpm (89.67% HRmax). The mean duration of training with cows was 15 min, showing a heart rate of 136 bpm (SD = 20, range = 87–164), corresponding with a 74% of HRmax, 35% of the HR in training with cows were located above the AeT and only 5% exceeded the AT. When training with bulls, of 15 min duration, the mean heart rate reached 157 bpm (SD = 16, range = 103–177), which represented the 85% of HRmax, where 73% of the HR exceeded AeT and 36% exceeded AT. Finally, according to real bullfighting with public attendance, despite having a shorter duration than training with cows or bulls (13 min), the mean heart rate was 164 bpm (SD = 15, range = 121–182), being 89% of HRmax; it should be noted that 79% of ppm were above the AeT and 61% of AT.

The average values of HR ranged from 121 to 182 bpm. These values were classified as “heavy” and “very heavy” according to the intensity levels of effort. Mean HR was, however, even more relevant than Maximum HR, since its values reveal the intensity of the sustained effort during each performance, all placed in our data between the “mild” and “heavy” or “hard” levels. Based on the ACSM classification, this % MaxHR in bullfight stands for a “heavy” level of work intensity. In the case of training sessions, these HR values correspond to intensity levels ranging between “heavy” and “very heavy”. Mean HR values were moderate during training. Of note is that during bullfighting before an audience, HR reached an average of 164 bpm (>89% HRmax), in training with bulls, the mean HR was also very high, 157 bpm (>85% HRmax), and even in training with wild cows the mean HR was 121 bpm (>74% HRmax). Based on these data, it can be interpreted that bullfights before an audience and trainings with bulls pose a high cardiac demand (80–89% of maximum heart rate), and trainings with wild cows pose a moderate demand (60–79% HRmax), without reaching, in any case, very high cardiac demands (<90% FCmax). Those HR values should be taken into account for the medical care of these professionals. Despite this, we consider that in the practice of professional bullfighting, there are psychological factors that may influence the cardiac response. In this sense, the relationship between stress and heart function is indisputable, as the HR may be interpreted as a stress indicator, and has even been observed that the HR can be altered without any physical activity. This can be illustrated in Hestia et al., who studied the heart rate in professional musicians, finding statistically significant differences between a practice or rehearsal and a public concert, where HR was as high as 98% of HRmax.

We understand that the physical activity performed by a bullfighter in full professional activity consists of intermittent and intense efforts, with little recovery time, whether in training, rehearsals or real bullfights. However, despite performing a similar physical activity in the three situations studied, it was during real bullfights that the highest levels of HR were found. This may be caused by the influence of
psychological factors that we think are present during the performance of a bullfighter in a real bullfight.

The results of this first study on cardiac demand in a professional bullfighter will help to improve the training methods of bullfighters, in order to get a better adaptation to the high cardiovascular demands that they suffer in bullfights. Thus, relating the responses of heart rate found and based on research on training methods and improve-

![Heart rate (bpm)](image)

Figure 1 Heart rate (bpm).
ved cardiovascular capacity, a recommendation could be the high intensity intervalic training, since the results of the latest research suggest that high-intensity training is more effective in improving cardio respiratory fitness than moderate-intensity training with equivalent energy cost.

Even though in many sports and professional activities HR response has been studied, this is the first study conducted during real bullfighting in order to analyze the cardiac response of a professional bullfighter in different situations of his profession with all that entailed, at least: with presence of fighting bulls and cows, with an audience or in a bullfight and wearing a bullfighter costume. However, the data do not allow to extrapolate these results to other bullfighters, or know the way in which the biological, personal or contextual variables influence the cardiovascular response during a bullfighter’s activity and if this influence is relevant or not. Nowadays, there is no research about the heart rate of bullfighters in different situations.

In the light of these findings and since physical exercise has a demonstrated modulator effect over HR and enhances tolerance to stress, regular exercise would be a strong recommendation for professional bullfighters, especially those who take part in a many bullfights. A practical recommendation could be to structure training sessions based not only on the technical needs of the bullfighter but also adding high intensity intervalic training, that enables sufficient cardiovascular conditioning for this profession.

Acknowledgements

We gratefully acknowledge to the professional bullfighter volunteer who participated in this study. We also thank to Vicente Ferrer Lopez for the medical test of the bullfighter.

Bibliografía

Víctor M. Zafrilla a, Nicolás Terrados b,c, Carlos M. Tejero-González d,e

a Bullfighting School of Albacete, Department of Physical Training, Albacete, Spain
b Sports Medicine Regional Unit of Principado de Asturias, Avilés, Spain
c Oviedo University, Department of Functional Biology, Oviedo, Spain
d Autonomus University of Madrid, Department of Physical Education, Sport and Human Movement (Madrid), Spain
e Corresponding author a: Facultad de Formación de Pro- fesorado y de Educación, Universidad Autónoma de Madrid, Ctra de Colmenar, Km15, 28049 Madrid, Spain. Tel.: +34 91 497 67 56; fax: +34 91 497 84 80. E-mail address: carlos.tejero@uam.es (C.M. Tejero-González).
URL: https://www.uam.es/carlos.tejero
(C.M. Tejero-González)
http://dx.doi.org/10.1016/j.acmx.2014.05.004