Background. Some studies have shown that diabetic patients had hypercoagulability. 

Objective. To compare the haemostasis pattern between overweight diabetic patients and control subjects.

Design. Twenty three overweight patients of our Diabetes Unit were enrolled. The clinical characteristics of these patients were: age 61.3 ± 12.3 years, body mass index (BMI) 27.2 ± 3.9 kg/m² and duration of diabetes 8.4 ± 8.7 years. A group of twenty three voluntary controls chosen at random (16 males/7 females) without diabetes were studied. The clinical characteristics of this group were: age 62 ± 13 years and BMI 27.6 ± 3.1 kg/m². All patients (diabetic and control) underwent the following examinations: plasminogen activator inhibitor type I (PAI-1), thrombomodulin/thrombomodulin III complex (TAT), tissue plasminogen activator (t-PA), von Willebrand antigen (vW), protein C (PC), protein S (PS), thrombomodulin (TH), activated VII factor, D dimer (DD), plasmin-antiplasmin (PAP), and postthrombin activation fragment F1+2 (F12).

Haemostasis parameters compared were in both groups and within the diabetic subjects in the subgroups with and without micro and macroangiopathy. In both groups, correlation analysis was performed between haemostasis and clinical parameters.

Results. Overweight diabetic patients showed an increment in procoagulant parameters (F12 1.38 ± 0.4 vs 1.21 ± 0.25 mmol/l; p < 0.05; Vw 94.6 ± 48 frente a 81.7 ± 28 (MU/ml); p < 0.05), and a decrease in fibrinolytic parameters (tPA 7 ± 2 frente a 10.7 ± 5.9 µg/l; p < 0.05), with a increase in D dimer (DD 22.3 ± 26.8 frente a 9.7 ± 5.4 µg/l; p < 0.05) and (1-Pa 12.6 ± 5.1 frente a 7.4 ± 3.1 ng/ml; p < 0.05). In diabetic, there was no difference according the absence or presence of microangiopathy or macroangiopathy. In a correlation analysis between BMI and Hba1c in controls, only protein C and tPA showed significant negative correlations (r = −0.34, p = 0.01 and r = −0.32, p = 0.05, respectively). A correlation analysis between BMI and Hba1c was also performed between BMI and haemostasis parameters, and only FvW was correlated with BMI (r = 0.32; p < 0.05). No correlations were found between haemostasis parameters with BMI and HbA1c in controls.

Conclusion. Hypercoagulable state is present in diabetic patients which with present knowledge, can be viewed as a risk factor for chronic complications.

Key words: Type 2 diabetes mellitus. Haemostasis. Overweight.

High risk haemostasis patterns in overweight patients with type 2 diabetes mellitus

D.A. DE LUIS, R. ALLER, L. CUÉLLAR, J.I. TORTOSA, E. ROMERO, D. BELLIDO Y C. TERROBA.


PATRÓN DE HEMOSTASIA DE ALTO RIESGO EN PACIENTES CON SOBREPESO Y DIABETES TIPO 2

Introducción. Algunos estudios han demostrado un estado de hipercoagulabilidad en los pacientes diabéticos.

Objetivo. Comparar el patrón de hemostasia entre pacientes diabéticos con sobrepeso y controles.

Diseño. Un total de 23 pacientes con diabetes mellitus tipo 2 y sobrepeso atendidos en nuestra unidad fueron incluidos en el estudio (16 varones/7 mujeres). Las características clínicas de los pacientes fueron: 61.3 ± 12.3 años, índice de masa corporal (IMC) 27.2 ± 3.9 kg/m² y duración de la diabetes 8.4 ± 6.7 años. Un grupo de 23 voluntarios sanos fue elegido al azar entre donantes de sangre sin diabetes mellitus (15 varones/8 mujeres). Las características clínicas de estos pacientes fueron: 62 ± 13 años e IMC 27.6 ± 3.1 kg/m². A todos los sujetos, casos y controles, se les realizaron las siguientes pruebas: inhibidor del activador del plasminógeno: tipo1 (PAI-1), complejo trombina/antitrombina III (TAT), activador titular del plasminógeno (t-PA), antígeno Von Willebrand (vW), proteína C (PC), proteína S (PS), trombomodulina (TH), factor VII activado, dimero D (DD), plasmina-antiplasmina (PAP) y fragmento activado protrombina F1+2 (F12). Estos parámetros fueron comparados en ambos grupos, y dentro de los diabéticos en los grupos con y sin micro y macroangiopatía. En ambos grupos, se realizó un análisis de correlación entre los parámetros clínicos y los hemostáticos.

Resultados. Los pacientes diabéticos con sobrepeso evidenciaron un incremento en los factores procoagulantes (F12 1.38 ± 0.4 frente a 1.21 ± 0.25 mmol/l; p < 0.05; Vw 94.6 ± 48 frente a 81.7 ± 28 (MU/ml); p < 0.05), y un descenso en los parámetros fibrinolíticos (tPA 7 ± 2 frente a 10.7 ± 5.9 µg/l; p < 0.05) y (1-Pa 12.6 ± 5.1 frente a 7.4 ± 3.1 ng/ml; p < 0.05). En los pacientes diabéticos no hubo diferencia en función de la ausencia o presencia de micro o macroangiopatía. La proteína C y tPA mostraron una correlación negativa (r = −0.34; p = 0.01) y (r = −0.32; p < 0.05, respectivamente) con la hemoglobina glucosilada (HbA1c). FvW se correlacionó de una manera positiva con el IMC (r = 0.32; p < 0.05). No se encontraron correlaciones entre los parámetros de hemostasia, con el IMC y HbA1c, en los sujetos control.

Conclusion. En los pacientes con diabetes tipo 2, hay un estado de hipercoagulabilidad que puede influir en las complicaciones crónicas de esta población.


Correspondence: Dr D.A. de Luis.
Associated Professor of Endocrinology and Nutrition.
Executive Director of the Institute of Endocrinology and Nutrition.
Medicine School. Valladolid University.
Carr. de los Picos, 3.º C. 47013 Valladolid.
Manuscrito recibido el 15-12-2000; aceptado para su publicación el 17-12-2001.
INTRODUCTION
Diabetes mellitus is an independent risk factor for the development of atherosclerosis. The possible mechanisms are unclear. It is posulated that chronic inflammation may contribute to the risk of coronary heart disease in different ways: increasing serum concentrations of acute phase reactants (such as fibrinogen or C reactive protein) or modifying the serum lipid pattern (such as decrease of HDL-cholesterol and increase of triglycerides). Another factor involved in the atherogenesis of diabetic patients is the promotion of the oxidation of LDL-cholesterol since oxidation enhances the atherogenic capacity of these molecules.

The aim of our study was to compare the haemostasis pattern between overweight patients with diabetes mellitus type 2 and a control group.

MATERIALS AND METHODS
Population
Twenty-three overweight patients of our Diabetes Unit (16 males 7 females) and twenty three controls (blood donors) (15 males 8 females) without diabetes were studied. Both groups were chosen at random and their characteristics are shown in Table 1. Patients and controls did not take either anti-hypertensive or hypolipidemic drugs. Diabetic patients took sulphonylureas as antihyperglycemic agents. The study was approved by the local ethical committee and each patient gave informed consent to participate in the study.

Design
All patients (diabetic and controls) underwent the following examinations: plasma homocysteine measurement, D-dimer, fibrinogen, C reactive protein and von Willebrand factor antigen (vWF) determination. Thrombin/antithrombin III complex (TAT), tissue plasminogen activator (t-PA), von Willebrand antigen (vWF), protein C (PC), protein S (PS), thrombomodulin (TH), activated VII factor, D dimer (DD), plasminogen activator inhibitor type 1 (PAI-1), thrombomodulin activation fragment F1+2 (F12), Factor V Leiden mutation, lipoprotein (a), and platelet function was determined by aggregometry (Boehringer Mannheim, Almere, The Netherlands).

Chronic diabetic complications assessment
All diabetic patients were checked in the Clinic for chronic complications. Ischaemic heart disease was assessed by angioscopy and in addition, a 12-lead resting electrocardiogram was recorded in supine position. Mac PC Electrocardiograph, Marquette Electrocardiograph and evaluated by a cardiologist. The presence of any of the following findings was considered suggestive of coronary heart disease:

- T wave inversion
- ST segment depression and Q waves
- Patients with signs or symptoms of cerebrovascular disease were evaluated with a CNS computed tomography. The final diagnosis was reviewed by a neurologist.

Peripheral vascular disease was clinically defined by the presence of intermittent claudication, absent or weakened peripheral pulses, or both. Retinopathy was documented by standard fundus eye examination and diagnosed on the presence of microaneurysms, venous dilatation, cotton-wool spots, neovascularization or hemorrhages. Clinical neuropathy was defined by an abnormal neurologic examination, consistent with the presence of peripheral sensorimotor neuropathy. Nephropathy was defined by the presence of urinary albumin excretion of 30 mg or more per 24 hours.

Statistical analysis
The results were expressed as mean ± standard deviation. The distribution of variables was analyzed with Kolmogorov-Smirnov test. Quantitative variables with normal distribution were analyzed with Student’s t-test. Non-parametric variables were analyzed with the U-Mann-Whitney test. Qualitative variables were analyzed with the chi-square test, with Yates correction as necessary, and Fisher’s test. Pearson and Spearman tests were used in correlation analysis. A p-value under 0.05 was considered statistically significant.

RESULTS
Twenty three overweight diabetic patients and 23 over- weight no diabetic patients were enrolled in the study. The mean age and BMI were similar in both groups (Table 1). The diabetes duration was of 8.9 ± 2.4 years, microangiopathy was present in 27.2% (15 patients) and macroangiopathy in 12.8% (10 patients) of diabetic patients.

Table 2 shows differences between both groups with an increase in pro-coagulant parameters in diabetic patients, with: T wave inversion, ST segment depression and Q waves. Patients with signs or symptoms of cerebrovascular disease were evaluated with a CNS computed tomography. The final diagnosis was reviewed by a neurologist.

Peripheral vascular disease was clinically defined by the presence of intermittent claudication, absent or weakened peripheral pulses, or both. Retinopathy was documented by standard fundus eye examination and diagnosed on the presence of microaneurysms, venous dilatation, cotton-wool spots, neovascularization or hemorrhages. Clinical neuropathy was defined by an abnormal neurologic examination, consistent with the presence of peripheral sensorimotor neuropathy. Nephropathy was defined by the presence of urinary albumin excretion of 30 mg or more per 24 hours.

For statistical analysis, the results were expressed as mean ± standard deviation. The distribution of variables was analyzed with Kolmogorov-Smirnov test. Quantitative variables with normal distribution were analyzed with Student’s t-test. Non-parametric variables were analyzed with the U-Mann-Whitney test. Qualitative variables were analyzed with the chi-square test, with Yates correction as necessary, and Fisher’s test. Pearson and Spearman tests were used in correlation analysis. A p-value under 0.05 was considered statistically significant.

RESULTS
Twenty three overweight diabetic patients and 23 over weight no diabetic patients were enrolled in the study. The mean age and BMI were similar in both groups (Table 1). The diabetes duration was of 8.9 ± 2.4 years, microangiopathy was present in 27.2% (15 patients) and macroangiopathy in 12.8% of diabetic patients.

Table 2 shows differences between both groups with an increase in pro-coagulant parameters in diabetic patients, with
De Luis DA, et al. High risk haemostasis patterns in overweight patients with type 2 diabetes mellitus

a significant increase in prothrombin activation fragment F1+2 and factor VIII(a). Values of PAI and TAT did not have statistical differences. Fibronectin parameters showed significant differences in TAT and D dimer (increased) and PAP (decreased), without differences in FvW. A decrease in anti-coagulant parameters was observed in diabetic patients (thrombomodulin), without differences in protein S and C.

All haemostasis parameters were compared in diabetic patients of the group with (48.9%) and without microangiopathy (51.1%), but no differences were found. In a correlation analysis of BMI and haemostasis parameters, only protein C and TAT showed significant inverse correlations (r = –0.34; p < 0.01 and r = –0.32; p < 0.05, respectively). Another correlation analysis was performed between BMI and haemostasis parameters, only FvW was correlated with BMI (r = 0.32; p < 0.05). No correlations were found between haemostasis parameters with BMI and HbA1c in non diabetic subjects.

No correlations were found among diabetes evolution, age or microalbuminuria levels with haemostasis parameters in diabetic patients.

DISCUSSION

Patients with type 2 diabetes mellitus have a variety of coagulation dysfunctions, which could contribute to microvascular and macrovascular complications. The hypercoagu-

able state has been demonstrated in a group of overweight diabetic patients, but F1+2 and activated factor VII were increased in diabetic patients, showing a hypercoagu-

able state. In diabetic patients, it has been shown that fibronectin parameters, such as PAI-1 and t-PA anti-

gen activator-1 (PAI-1) might be involved in the pathogenesis of atherosclerosis. We found a hypercoagu-

able state in diabetic patients, without differences in protein S and C.

Another haemostasis alteration in overweight diabetic pa-

tients is a decrease in the anticoagulant system. Patients with diabetes have activated protein C resistance, sugges-
ting that final steps of the protein C inhibition system could be abnormal. These abnormalities of anticoagulant system might constitute a potential trigger for haemostatic activation. Gabazza et al. demonstrated alterations in overweight diabetic patients in the plasma levels of fibronectin, FvW, fibrin monomer, protein C antigen, total protein S antigen, and thrombomodulin. Patients with microalbumi-

nuria showed low plasma levels of activated protein C, protein C inhibitor complex and significant low values of the anticoagulant response to exogenous thrombomodulin, indicat-
ing a poor plasma reactivity to the anticoagulant effect of thrombomodulin. Our study showed a decrease in thrombo-

modulin, but no differences between diabetic patients with micro or macroangiopathy were found.

Previous studies have showed alterations in fibrinolysis system in overweight diabetic patients, such as a significant increase in D dimer levels. Increased levels of plasmino-
gen activator inhibitor (PAI-1) might be involved in the pathogene-

sis of the vascular complications of diabetes mellitus. How-

ever, Mansfield et al. showed low PAI-1 levels in subjects with retinopathy, without a clear explanation.

The lack of relation between glycemic control and haem-

ostasis parameters in our study, could be due to a intrinsic

altated state in diabetic patients. This haemostasis altera-
tion with other risk factors such as hyperglycaemia or hyperlipidaemia could start micro- and macro-angiopathy, and haemostasis could act in a second step, so that there was a lack of relationship between diabetic complications and haemostasis parameters. For example Altunbas et al. in dia-

betics patients achieving good control after 3 months of the-

rapy intensification, observed a significant reduction in protein S and cP-binding protein, however, no differences could be observed in other parameters and HbA1c did not show any correlation with plasma antigenic levels or func-
tional activities of coagulation inhibitors either at baseline or at 3 months of good glycaemic control. Our study only showed correlation between protein S and PAI with HbA1c. Previous data have indicated that even mild postprandial hyperglycaemia in diabetic subjects, who are concerned to be in good control, activates haemostasis. In this study, the postprandial levels of glucose, triglycerides, fibrinogen, F1+2, TAT and D dimer were lower after glibenclamide ad-

ministration compared to placebo, while the concentrations of insulin and C-peptide were higher. These data showed a continuous alteration in coagulation in diabetic patients, another interesting detail is the prothrombin state demon-

strated in relatives of type 2 diabetic patients, who in a case-

control study exhibited levels of prothrombin F1+2 and D dimer than control subjects.

An additional point of interest is the relationship between some haemostasis parameters and BMI. One possibility is that changes in these parameters are related to adipose-tis-
sue derived cytokines. In conclusion, hypercoaguclable state is present in diabetic patients which with present knowledge can be viewed as a risk factor for chronic complications. The role of adipose tissue as a possible cause of chronic inflammatory activity in diabetic patients requires further investigation.

REFERENCES

3. Pickup JC, Matlock MB, Chenuoy GD, Burt D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and in-
trol fibrinogen and the relation to acute phase response in diabetic me-
5. Masuda I, Seo K, Morishita S, Kanno T, Okazaki Y, Monobe H. Plasma of acute-phase serum proteins in dia-
7. Decker PL, Rathy M, Johan-Vague I. Measurement of plasminogen ac-
8. Bogdais N. An enzyme-linked immunosorbant assay for determi-
nation of tissue plasminogen activator applied to patients with thrombo-
11. Johan-Vague I, Alonso MC, Vague P. Thrombotic and fibrinolytic factors and cardiovascular risk in non-insulin-dependent diabetes me-
De Luis DA, et al. High risk haemostasis patterns in overweight patients with type 2 diabetes mellitus


