The two-edged sword
RICHARD N. BERGMAN

Keck Professor of Medicine. University of Southern California.
Los Angeles CA. USA.

Unlike most chronic illnesses which have been declining or sta-
bolizing in prevalence, incidence of type 2 diabetes has been increa-
sing in the Western Hemisphere, and is now increasing at alarming
rates in Asia1. While all causes of these increases cannot be identi-
fied, without question the increase in adiposity is an important con-
tributor. The latter is due to increased caloric intake and reduced
energy expenditure, although other factors may contribute2. Adipos-
ity leads to insulin resistance, which in normal individuals elicits
an hyperinsulinemic response, which compensates for the insulin
resistance. Unresolved questions relate to whether fat storage in
specific depots is particularly egregious, what mechanisms are re-
ponsible for the pancreatic islet-cell compensation, and why said
compensation can fail, leading to diabetes in some, but not all indi-
viduals. Epidemiological studies suggest that visceral fat is particu-
larly detrimental to metabolic health. Direct evidence favoring the
importance of visceral fat is the result of surgical extirpation of
the superior omentum in the canine model. While eliminating only 7%
of total visceral fat in the dog, insulin sensitivity increased over
50%. This study compliments human data from Klein et al that
evisceration of subcutaneous fat did not alter insulin resistance3.

Why is visceral fat detrimental? Induction of visceral adiposity
by feeding of an hypercaloric high fat diet leads to insulin resistan-
ce for several reasons: a) increase of stored visceral fat in adipo-
cytes which are themselves insulin resistant resulting in flux of free
fatty acids (FFA) from viscera to liver and extrasplanchnic tissues;
b) action of the sympathetic nervous system (SNS) which favors
lipolysis and causes pulsatile release of FFA from visceral fat into
the portal circulation; c) effects of pulsatile release of FFA which
results in hepatic insulin resistance, associated with upregulation of
liver gluconeogenic enzymes (fig. 1). Interestingly, the resultant
insulin resistance of liver can be successfully reversed by antago-
nism of the cannabainoid system with rimonabant.

The role of FFA in pathogenesis of insulin resistance has been
questioned, as evidence was lacking for increased fasting FFA in
obese individuals. Recently we reported a powerful circadian
rhythm in FFA levels, with a peak in levels between 2 and 4 AM4.
We propose that it is the nocturnal surge in plasma FFA which is
responsible for onset of insulin resistance in the overweight subject
(fig. 2). This surge is due at least in part to a night-time outpouring
of FFA from the visceral fat depot. We propose that omentectomy
reduces this outpouring and increases insulin sensitivity.

Not all insulin obese, insulin resistant individuals develop Type 2
diabetes, and induction of insulin resistance per se does not cause
diabetes. Type 2 diabetes occurs when the ability of the beta-cells of the pancreatic islets fail to compensate for diet-induced insulin resistance. It is only recently that it has been widely accepted that type 2 diabetes is usually due to a combination of insulin resistance and failed pancreatic compensation. This failure of compensation can be most well understood in terms of the hyperbolic relationship between insulin resistance and islet compensation (fig. 3). Normally resistance results in upregulation of beta-cell function which is described by a rectangular hyperbola: insulin sensitivity × insulin secretion = constant (disposition index, “DI”). A higher value of DI is protective, a reduced DI portends conversion to type 2 diabetes mellitus. In fact, at this juncture, the value of DI is the most powerful predictor of conversion from prediabetes to frank diabetes mellitus, and this predictive power of DI far outweighs predictability of genes for type 2 diabetes so far identified. Interestingly, all genes for type 2 diabetes so far identified are related to beta-cell failure, rather than insulin resistance.

What is responsible for the hyperbolic relationship between insulin action and insulin secretion? It is widely believed that insulin resistance results in increased glycemia, which in turn increases secretory potential of the pancreatic islets. But, recent evidence from our laboratory shows that hyperinsulinemic compensation for insulin resistance can occur even in the absence of increased fasting glucose levels. Thus, it is unknown what the signal or signals are which account for hyperinsulinemic compensation. Because it is such compensation which fails as an initial step in progress to diabetes, it is important to understand beta-cell compensation. We hypothesize that nocturnal FFA, not only responsible for insulin resistance, may also mediate islet cell compensation. Thus, we are reminded of the importance of battle by sword here in El Escorial; by analogy, nocturnal FFA secondary to visceral lipolysis may not only cause insulin resistance, but may function as a two-edged sword, also mediating the islet cell response to compensate for insulin resistance. It is only in the modern world with a plethora of foodstuffs that such a

Fig. 1. Pathogenesis of insulin resistance syndrome. Sympathetic nervous system drives FFA release from visceral fat depot; insulin resistance results as does hyperinsulinemia. FFA: free fatty acids; CNS: central nervous system.

Fig. 2. Nocturnal increase in plasma fatty free acids. FFFA: flux of free fatty acids.
Bergman RN. The two-edged sword

The two-edged sword has turned towards the owner to result in an international epidemic of type 2 diabetes.

Conflict of interest

The author declares he has no conflict of interest.

REFERENCES