ORIGINAL ARTICLE

An evaluation of glycosylated hemoglobin requesting patterns in a primary care setting: a pilot experience in the Valencian Community (Spain)

María Salinasa, Maite López-Garrigós*, Arturo Carratalab, Cristina Aguadoc, Julián Díazd, Mario Ortuno, Enrique Rodríguez-Borja, Martín Yago, Virtudes Chinchillag, Goizane Marcaida, Ángel Esteban, Begoña Laíz, Marcos Guaita, Miguel Ángel Lorente, Francisco Pomares, Joaquín Urisk

aDepartamento Laboratorio Clínico, Hospital de San Juan, Alicante, Spain
bDepartamento Laboratorio Clínico, Hospital Clínico Universitario, Valencia, Spain
cDepartamento Laboratorio Clínico, Hospital Universitario La Fe, Valencia, Spain
dDepartamento Laboratorio Clínico, Hospital Francesc Borja, Gandia, Valencia, Spain
eDepartamento Laboratorio Clínico, Hospital de la Ribera, Alzira, Valencia, Spain
fDepartamento Laboratorio Clínico, Hospital de Requena, Valencia, Spain
gDepartamento Laboratorio Clínico, Hospital General Universitario de Alicante, Alicante, Spain
hDepartamento Laboratorio Clínico, Hospital General de Valencia, Valencia, Spain
iRoche Diagnostics
jDepartamento de Endocrinología, Hospital de San Juan, Alicante, Spain
kDepartamento de Salud Pública, Universidad de Alicante, Spain

Received 23 December 2010; accepted 23 February 2011

Objective: To assess the pattern of glycosylated hemoglobin (HbA1c) requests by clinicians from eight health care departments by calculating indicators of demand appropriateness.

Methods: A cross-sectional study of the number of HbA1c requests by primary care clinics in 2008 and 2009. The indicator of demand appropriateness was the proportion of HbA1c values lower than 6.5%. Variables were collected and indicators were automatically calculated. The number of HbA1c measurements that should theoretically have been requested according to known diabetes prevalence data was also calculated.

Results: A progressive increase was seen in the demand for HbA1c measurements. Approximately 54% of HbA1c values obtained in seven of the eight departments studied were lower than 6.5%. The number of theoretical HbA1c requests that would have been expected based on the known prevalence of diabetes was higher than the number of HbA1c requests in all departments.

KEYWORDS
glycosylated hemoglobin; Biological markers; Type 2 diabetes mellitus; Glycemic control

*Corresponding author.
E-mail address: lopez_marter@gva.es (M. López-Garrigós).

1575-0922/5 - see front matter © 2010 SEEN. Published by Elsevier España, S.L. All rights reserved.
Introduction

Type 2 diabetes mellitus (DM) is a chronic disease with a very high prevalence. Glycosylated hemoglobin (HbA1c) values reflect blood glucose concentration during the 2-3 months prior to analysis. For the past 30 years HbA1c has been an essential marker when monitoring diabetic patients in order to prevent complications of the disease \cite{1-3}. There is however evidence that the test is being inappropriately used in clinical practice \cite{4}.

A recent recommendation that HbA1c be used not only for the control of diabetic patients, but also for the diagnosis of diabetes \cite{5,6} represents a significant change in the management of the test and will require new requesting patterns to be established. The International Expert Committee (IEC) has concluded that advances in instrumentation and standardization have made HbA1c tests as least as exact and accurate as those of glucose. In addition, the lower intraindividual and preanalytical biological variability of HbA1c as compared to plasma glucose and the fact that fasting is not required before blood collection supports the use of the test for disease diagnosis \cite{7}, which should lead to new approaches regarding its use.

Given the new diagnostic value of the biochemical variables \cite{5,6}, the first step must be to analyze the current HbA1c requesting patterns as a basis for establishing future demand for the test. A comparison of the tests requested by different health care areas or departments is considered a good approach because it can tell us the existing variability, and so help us establish the best clinical practice. In our case, the study objective was to assess the HbA1c requesting patterns of primary care (PC) physicians from eight health care areas.

Materials and methods

A cross-sectional study was conducted by assessing and analyzing HbA1c requests made during 2008 and 2009 by PC physicians in eight health care areas, each having a reference hospital with its own laboratory, caring for 31\% of the population covered by the Valencian Health Authority (AVS).

To set up a network of participating laboratories, two surveys were sent to 13 laboratories in the AVS. Study inclusion criteria were the availability of the same laboratory computer system (SIL, Omega, Roche Diagnostic®) and a computer application based on a data warehouse and OLAP (on-line analytical processing) cubes (Omnium, Roche Diagnostic®), and the ability to stratify SIL results between clients (inpatient, PC, etc). Eight laboratories participated in the study. They tested samples from hospital departments and emergency rooms, and also from outpatient and PC clinics which were taken at the different health care centers and transported to the laboratory. Table 1 shows the population served by each health care department.

In a second stage, records and indicators were defined, agreed, and validated, and a common database was set up. An independent technician was selected to collect records and indicators from each laboratory and send them for analysis to Hospital de San Juan, the project coordinating center.

Conclusions: The results appear to suggest that HbA1c requests in the health care departments studied were not always appropriate. HbA1c measurements were probably overused in patients without diabetes and underused in patients with diabetes.

© 2010 SEEN. Published by Elsevier España, S.L. All rights reserved.
HbA1c requests were assessed from January 2008 to December 2009 (2009 data were only included for two health care departments). To measure HbA1c, all participating laboratories used a method certified by the National Glycohemoglobin Standardization Program (NGSP) which was not changed during the study period.

A threshold HbA1c value of 6.5% was established after discussion with specialists in endocrinology and nutrition, and any requests leading to a lower value were considered to be potentially inappropriate. Therefore, the proportion of all HbA1c measurements requested for patients controlled by PC giving values < 6.5% was calculated monthly as an indicator of appropriateness. Daily SIL records (demographic data and HbA1c requests) and the proposed indicators were calculated and collected at each health care department.

The theoretical number of HbA1c requests that should have been made based on the American Diabetes Association (ADA) recommendations for the control of diabetic patients was calculated based on the prevalence of type 2 DM in people aged over 18 years in the Region of Valencia and on census data.

Results

Table 1 shows the number of HbA1c measurements requested by PC physicians from each health care department in 2008-2009, as well as the proportion of HbA1c values lower than 6.5% in the same period. A higher HbA1c demand was seen in 2009 in all health care departments except for department B. Variability was found between departments in the indicator of appropriateness, with center F showing a much lower mean as compared to all others. The data demonstrated that a value lower than 6.5% was found in approximately 54% of all HbA1c measurements requested from PC to seven laboratories in the Region of Valencia.

Figure 1 shows the monthly percentages of HbA1c values lower than 6.5% at each health care department. Table 1 shows the theoretical number of HbA1c measurements that should have been requested based on ADA recommendations and the prevalence of type 2 DM in the Region of Valencia. Fewer HbA1c measurements were requested by all health care departments than should theoretically have been requested according to the above theoretical calculation.

Discussion

DM diagnostic criteria have recently been modified due to the standardization of the HbA1c measuring method and its correlation with the risk of occurrence of late complications of DM. The cut-off point diagnostic of DM has thus been established at a HbA1c value ≥ 6.5%, and patients with HbA1c values ranging from 5.7%-6.6% have been defined as a group at high risk of developing DM. New diagnostic criteria will possibly have a relevant impact on requests for the test to clinical laboratories, and the current situation should be analyzed at each health center to assume and predict the work load that may result from the new ADA recommendations.

The main limitations of this study were that clinical patient data were not available and HbA1c management in the monitoring of gestational diabetes was not considered. The results showed a greater demand for the test in PC in 2009 as compared to 2008 in all health departments but one. This increase was also reported by other studies, which additionally noted that this measurement was also requested for non-diabetic people at a time prior to the new indication for the test.

It should be noted that the study not only showed an increase in the number of HbA1c requests, but also a high proportion of patients with HbA1c values < 6.5% found at a time when HbA1c was not recommended for diagnosis (2008 and first six months of 2009). These data may suggest an excellent DM control in PC or an inappropriate demand in non-diabetic patients. However, the proportion of patients with HbA1c values < 6.5% differed between the health care departments. This data also suggests differences in the

Table 1

<table>
<thead>
<tr>
<th>Department</th>
<th>Population served</th>
<th>HbA1c requested</th>
<th>% HbA1c with values < 6.5%</th>
<th>HbA1c tests required according to ADA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2008</td>
<td>2009</td>
<td>2008</td>
</tr>
<tr>
<td>A</td>
<td>197,029</td>
<td>18,574</td>
<td>21,325</td>
<td>48.5</td>
</tr>
<tr>
<td>B</td>
<td>254,233</td>
<td>24,346</td>
<td>21,719</td>
<td>54.59</td>
</tr>
<tr>
<td>C</td>
<td>274,233</td>
<td>14,663</td>
<td>18,098</td>
<td>65.10</td>
</tr>
<tr>
<td>D</td>
<td>271,218</td>
<td>21,258</td>
<td>22,519</td>
<td>54.79</td>
</tr>
<tr>
<td>E</td>
<td>55,282</td>
<td>4,836</td>
<td>5,455</td>
<td>48.83</td>
</tr>
<tr>
<td>F</td>
<td>372,138</td>
<td>ND</td>
<td>20,705</td>
<td>ND</td>
</tr>
<tr>
<td>G</td>
<td>357,267</td>
<td>ND</td>
<td>33,776</td>
<td>ND</td>
</tr>
<tr>
<td>H</td>
<td>233,075</td>
<td>14,458</td>
<td>18,641</td>
<td>54.61</td>
</tr>
</tbody>
</table>

ADA: American Diabetes Association; PC: primary care; HbA1c: glycosylated hemoglobin.

*Number of measurements that should have been requested based on census, known prevalence of type 2 DM, and 2009 ADA recommendations.
consideration that a large number of diabetic patients were at therapeutic goals. However, it has been reported that the proportion of Spanish patients with type 2 DM and a HbA1c value ≤ 6.5% ranges from 18%-28%. Thus, considering the low number of annual HbA1c measurements, far from the recommended number, most measurements yielding values < 6.5% were probably requested for non-diabetic people15. Nevertheless, another work group using data from a single primary care center applying the DM management guidelines, also in Spain, achieved HbA1c values lower than 7% in 54.8% of its patients 16. The study results appear to suggest an inappropriate request for HbA1c measurements in this population, not only because they were probably overused in non-diabetic patients, but also because they were underused in patients with DM. New diagnostic criteria for DM will change the HbA1c requesting habits of PC physicians, and measurement indications and intervals should be left clear. DM screening is currently recommended for all people over 45 years of age with no risk factors for diabetes, and should be repeated every three years if a normal test is found. Screening age is earlier in adults with risk factors for diabetes17. Cooperation between endocrinologists, primary care physicians, and clinical laboratory professionals will be required to establish and implement request protocols and guidelines. Subsequent assessment of the request pattern using indicators of demand appropriateness such as those shown in the study will also be required to maintain an appropriate level of request for the test and thus resolve any potential deviation.
Conflict of interest

The authors state that they have no conflict of interest.

Acknowledgement

Authors wish to thank all primary care and clinical laboratory staff for their contribution to health care provision.

References