lar enlargement, and no other signs of sexual development; some mechanisms proposed for this phenomenon impli-
cate the NR0B1 gene in the prepubertal control mechanism
of the gonadal axis, ACTH-mediated stimulus of testicular
steroidogenesis, or autonomous hyperplasia of Leydig
cells.1 In the pubertal period, these patients will require
testosterone replacement for the development of sec-
ondary sexual characteristics. Since \textit{DAX1} abnormalities may
affect testicular development and spermatogenesis, fertility
treatment using pulsatile GnRH and gonadotropins is often
ineffective.4 Mental disability (motor, speech, and social
behavior) may also occur. To our knowledge, there are no
cases reported in the literature of an association between
\textit{DAX1} and GH deficiency as seen in case 1.

\textit{DAX1} mutations account for 58\% of cases of primary
adrenal insufficiency of “unknown etiology” in children
(newborn-13 years) in whom autoimmune causes, deficient
steroidogenesis, or metabolic causes have been ruled out.5
Although it does not change the therapeutic strategy, mole-
cular diagnosis allows for genetic counseling to relatives
and is warranted in children with the onset of a salt-losing
syndrome of unknown etiology, with or without associated
cortisol deficiency. High clinical suspicion is required to
prevent erroneous diagnosis and to allow for an adequate
therapeutic approach.

References

novel \textit{DAX1} mutations with loss of function identified in Chinese
patients with congenital adrenal hypoplasia. J Clin Endocrinol Metab. 2010 [Epub ahead of print].
JC. Variable presentation of X-linked adrenal hypoplasia
congenita. J Pediatr Endocrinol Metab. 2001;14:
1093–6.
Persani L, et al. Hypogonadotropic hypogonadism as a present-
ing feature of late-onset X-linked adrenal hypoplasia congenita.
J Clin Endocrinol Metab. 2002;87:44–8.
5. Lin L, Gu WX, Ozisik G, To WS, Owen CJ, Jameson JL,
et al. Analysis of \textit{DAX1} (NR0B1) and steroidogenic factor-1
(NR5A1) in children and adults with primary adrenal fail-
ure: ten years’ experience. J Clin Endocrinol Metab. 2006;91:
3048–54.

Myriam Sánchez-Pachecoa,,,*, Oscar Moreno-Péreza,
Ruth Sánchez-Ortigaaa, Antonio Picób, Francisca Morenob

a Sección de Endocrinología y Nutrición, Hospital General
Universitario de Alicante, Alicante, Spain

b Sección de Endocrinología Pediátrica, Hospital La Fe de Valencia, Valencia, Spain

* Corresponding author.

E-mail address: myriam.sanchez-pacheco@hotmail.com
(M. Sánchez-Pacheco).

Thymic carcinoid in the setting of a
multiple endocrine neoplasia syndrome
(MEN 1). Prophylactic thymectomy?11,12,13

Carcinoide tímico en el contexto de un
síndrome de neoplasia endocrina múltiple
(MEN 1). ¿Timectomía profiláctica?

The thymus gland is one of the most common sites of neu-
roendocrine tumors. Approximately 150 cases have been
reported since 1972, of which 25\% were associated with mul-
tiple endocrine neoplasia type 1 syndrome (MEN 1).1
Thymic carcinoid has been reported in 2.6–5\% of patients with
MEN 1 in retrospective series.2

This type of tumor is more frequent in males, mostly
smokers (>95\%), and is usually non-functioning. It is the most
common cause of anterior mediastinal masses in patients
with MEN 1. The tumor is generally detected in advanced
stages based on local symptoms or as a chance radiographic
finding, and shows an aggressive behavior in most cases.

11 Please, cite this article as: Altemir Trallero J, et al. Carci-

The most common cause of death in current MEN 1 is
potential malignancy of gastroenteropancreatic neuroen-
docrine tumors,3 which are more frequent than thymic
carciNoIDS. however, since the effectiveness of the treat-
ment of these tumors has increased, some studies have
suggested that it is the development of thymic or other car-
icoids that limits survival in patients diagnosed with MEN 1.
This is because they are much more aggressive, depending
on their histology and local invasion.1,2,4

The natural history, results of early diagnosis, survival,
or most adequate treatment are still unknown.

We report the case of a 48-year-old male patient who
underwent surgery through a trans-sphenoidal approach
for pituitary macroadenoma at 25 years of age, and repeat
surgery four years later through a left frontoparietal cran-
iotomy followed by residual tumor radiotherapy. At 32 years
of age, after suffering a perforated ulcer, he was diagnosed
with multicentric pancreatic gastrinoma, and treatment
was started with proton pump inhibitors and somatostatin
analogs.

Primary hyperparathyroidism secondary to parathy-
roid hyperplasia was not detected until the age of 37.
This is unusual, because this is usually the first sign
in patients with MEN 1. Total parathyroidectomy was
performed.

A genetic study in that same year revealed the pres-
ence of the Q450X familial mutation in exon 9 of the MEN
Figure 1 Somatostatin receptor scintigraphy. Planar images of the head, chest, and abdomen at 4 and 24 h. Planar images show two nodular lesions with a high density of somatostatin receptors in the right hemithorax and in front of the inferior plane of the spleen.

Figure 2 SPECT-CT of the chest and abdomen allows for the localization of both lesions: the thoracic lesion in the anterior mediastinum and the abdominal lesion in the tail of the pancreas (an already known gastrinoma with no significant changes from prior images).

1 gene. A subsequent extension of this study to all first-degree relatives found the same mutation in his father and brother.

At the age of 38 years, a control octreotide scan showed two nodular lesions with an increased uptake of somatostatin receptors. One of the lesions was the already known gastrinoma, while the other was located in the anterior mediastinum (Figs. 1 and 2). Total thymectomy through a median sternotomy was performed. The pathological report confirmed the diagnosis of a 5-cm thymic carcinoid invading the capsule. Radiotherapy was subsequently administered. Six months after surgery, tumor recurrence had not been seen in either scintigraphy or CT.

The unique characteristic of the reported case was the diagnosis of a pituitary adenoma as the first indication of MEN 1. In fact, primary hyperparathyroidism is the most common presentation, with a 100% penetrance. A literature review discussing the most widely accepted recommendations for managing patients with MEN 1 is provided below.

The 2001 consensus guidelines for the diagnosis and treatment of MEN 1 and MEN 2 state that thymic carcinoid is more common in MEN 1, particularly in males, while bronchial carcinoid occurs more frequently in females. Thymic carcinoid is more aggressive in MEN 1 than in sporadic cases, and CT or MRI is recommended for early diagnosis, but no specific time intervals for follow-up are given. Near-total thymectomy concomitant with parathyroidectomy is recommended.

A prospective study of 85 patients with MEN 1 followed up for a mean of 8 years with CT, MRI, chest X-rays, and, since 1994, with octreoscan was published in 2003. Seven of these patients (8%) developed a thymic carcinoma. Carcinoid was diagnosed in four patients based on routine morphological assessment and in two patients based on clinical symptoms of cough and chest pain. In the remaining patient, carcinoid was an incidental finding at repeat parathyroid surgery. All patients were male (mean age, 55 years), and 86% also had Zollinger–Ellison syndrome. In no patient was thymic carcinoid the first sign of MEN 1. All patients were hormonally inactive. Tumor presence was confirmed in 100% of patients by CT or MRI, in 75% using somatostatin receptor scintigraphy, and in 66% by chest X-rays. Bone metastases occurred in two patients (28%) diagnosed by MRI but not by scintigraphy. Radiographic recurrence of the disease was found in all patients at one-year follow-up after surgery.

A study of patients with MEN 1 from the Italian register was published in 2005. Seven cases of thymic carcinoid were diagnosed in a series of 221 patients with MEN 1, 41 sporadic and 180 familial, i.e. a 3.1% prevalence. They all were male patients, with a mean age at presentation of 38.7 ± 9.9 years. Eighty-five percent of them were smokers. Six patients were asymptomatic at diagnosis, which was made based on a mediastinal mass incidentally found in an imaging test. No hormone secretion or carcinoid syndrome was detected in any case, and urinary hydroxyindoleacetic acid levels were normal in all patients. A slight increase was detected in serum enolase and chromogranin A levels. During follow-up, three patients died from diffuse metastases 60, 36, and 26 months after surgery. One patient had locoregional metastases 96 months after surgery but, at the time of writing, is stable, while two patients show no evidence of disease after 28 and 120 months, respectively, and one patient undergoing prophylactic thymectomy with a sub-
sequent pathological report of carcinoid is free of disease 84 months later.

In 2009, a group of 761 patients with MEN 1 registered by the Groupe des tumores Endocrines (GTE) was analyzed, and 21 patients were diagnosed with neuroendocrine thymic tumors (2.8%). All patients but one were male, and mean age at diagnosis was 42.7 years. The youngest patient in the series was 16 years old. Mean approximate survival was 9 years and 7 months, with a 70% mortality, which confirms the poor prognosis of thymic carcinoid tumors in the setting of MEN 1. There was no specific or sensitive marker for tumor detection, and no specific associated genetic mutation. Both MRI and CT were consistently positive for diagnosis. Among the 21 patients analyzed, 11 had prior hyperparathyroidism and 6 developed thymic carcinoid tumors after prophylactic thymectomy through a median cervicotomy, which may suggest the relative difficulty of total thymus removal using such an approach.

Based on the foregoing, we conclude that it is advisable to make an early diagnosis of thymic carcinoid in patients of both sexes with MEN 1 by annual CT or MRI, and to perform total thymectomy in all patients during the same surgical procedure as parathyroidectomy at specialized centers. These recommendations are based on the invasive potential of these tumors, the lack of predictors, and the low morbidity of the procedure despite the uncommon occurrence of this type of tumor. However, this measure does not completely prevent the development of thymic carcinoid, and since we cannot predict which patients will develop it, they should all be monitored.

References

Servicio de Endocrinología y Nutrición, Hospital Clínico Lozano Blesa, Zaragoza, Spain
*Corresponding author.
E-mail address: esperanza.aguillo@gmail.com (E. Aguillo Gutiérrez).

Seizure in a diabetic patient. Hypoglycemia or a side effect of continuous glucose monitoring?

Crisis comicial en paciente diabético. ¿Hipo glucemia o efecto secundario de la monitorización continua de glucosa?

Optimization of treatment of diabetes mellitus involves an increased risk of hypoglycemia, which may be asymptomatic. On the other hand, seizures may be triggered by hypoglycemia, and the monitoring of patients with both diabetes and epilepsy therefore requires special attention.

We report a female patient with type 1 diabetes mellitus (T1DM) and epilepsy with generalized tonic-clonic and complex partial seizures and photosensitive absences who experienced a seizure while carrying a continuous glucose monitoring (CGM) device. The patient was 35 years old at the time of the episode and had been diagnosed with T1DM at 7 years and with epilepsy at 16 years. Her seizures were usually triggered by stress, sleep deprivation, and hypoglycemia. The patient’s DM had been treated with an insulin pump since 2003, before her pregnancy. This treatment had been discontinued after delivery and restarted in 2006 due to poor glycemic control treated with multiple doses of insulin analogues. Glycosylated hemoglobin (HbA1c) level was 7.2% in the months preceding admission, but since the patient was being monitored for pregnancy, intermittent CGM was decided upon to improve glycemic control. The patient had been treated for epilepsy since 2002 with lamotrigine (current dose, 500 mg/day) and experienced 1–2 seizures per year, most of them coinciding with one of the abovementioned triggering factors.

In July 2010, she was brought by ambulance to the casualty ward of the hospital after suffering a tonic-clonic seizure at midday in her workplace. Blood glucose on arrival was 147 mg/dL. The patient showed bradypsychia, but no focal neurological signs or other abnormalities on examination. She had had a continuous glucose infusion pump implanted and a glucosensor inserted 2 days before. Thirty minutes after arrival, the patient experienced two episodes of the same characteristics that were treated with clonazepam. The concomitant blood glucose level was 140 mg/dL. Impregnation was started with valproic acid,