Treatment with fixed thyroxine doses in pregnant women with subclinical hypothyroidism

Inés Seoane Cruz*, Manuel Penín Álvarez, Reyes Luna Cano, Ricardo Víctor García-Mayor

Servicio de Endocrinología y Nutrición, Complexo Hospitalario Universitario de Vigo, Vigo, Pontevedra, Spain

Received 28 November 2011; accepted 14 February 2012
Available online 29 May 2012

Abstract

Background: Hypothyroidism is usually treated with thyroxine doses on patient weight. In some cases, however, fixed doses have proved to useful to normalize TSH levels, which is especially important during pregnancy.

Patients and methods: Sixty-eight women diagnosed with subclinical hypothyroidism, autoimmune or not, during pregnancy were given a fixed dose of thyroxine 50 mcg/day. TSH measurements were performed to assess the need to change the dose, which was increased or decreased by 25 mcg/day when necessary.

Results: With a dose of 50 mcg/day of thyroxine, 42% of patients reached a TSH level less than 3 μU/mL, 79.4% reached a TSH level less than 4.5 μU/mL, and 20.6% had TSH levels higher than 4.5 μU/mL.

Discussion: Our data suggest that a fixed dose of thyroxine 50 mcg/day is inadequate in a significant proportion of pregnancy-diagnosed hypothyroidism regardless of whether the reference of TSH level used is 4.5 or 3 μU/mL. Starting dose of 75 mcg/day is probably more adequate, but studies are needed to evaluate the possibility of overtreatment with such dose.

© 2011 SEEN. Published by Elsevier España, S.L. All rights reserved.

Tratamiento con dosis fija de tiroxina en gestantes con hipotiroidismo subclínico

Resumen

Introducción: El tratamiento del hipotiroidismo se hace habitualmente calculando la dosis de tiroxina en función del peso del paciente. En algunas situaciones se ha comprobado la utilidad de administrar dosis fijas de la hormona para normalizar la concentración de TSH, cuyo control es especialmente importante en el caso de pacientes gestantes.


* Corresponding author.

E-mail address: ineseoane@yahoo.es (I. Seoane Cruz).

2173-5093/$ - see front matter © 2011 SEEN. Published by Elsevier España, S.L. All rights reserved.
Treatment with fixed thyroxine doses in pregnant women with subclinical hypothyroidism

Introduction

Primary hypothyroidism is characterized by elevated plasma TSH levels. Hypothyroidism is called subclinical when the FT4 level is normal, and overt when the FT4 level is decreased.

During pregnancy, TSH levels higher than 4.5 μU/mL have been related to impaired fetal neurological and psychomotor development and an increased risk of premature labor, pre-eclampsia, and abruptio placenta.1-2 and thyroxine treatment is usually given to normalize TSH levels.3,4 It has even been proposed that the optimum TSH level in pregnant women is less than 2.5 μU/mL during the first trimester and less than 3 μU/mL during the second and third trimesters.3,5,6

The most commonly used approach for starting thyroxine replacement therapy consists of calculating hormone dosage based on the weight of each patient (a mean of 1.6 μg/(kg/day) are needed).7 An alternative that has been shown to be of value for elderly or cardiovascular patients5 consists of starting treatment at a fixed dose of 25-50 μg/day of thyroxine, with subsequent adjustment based on TSH levels. Starting treatment with a loading dose is an increasingly popular approach, particularly for the management of overt hypothyroidism in pregnant patients.9 This study was intended to verify whether treatment with fixed thyroxine doses of 50 μg/day is effective during pregnancy.

Patients and methods

All patients diagnosed with subclinical hypothyroidism during pregnancy in the Vigo healthcare area from May 2010 to March 2011 were systematically screened for study entry. Patients with overt hypothyroidism and hypothyroidism diagnosed before pregnancy were excluded. The resulting sample consisted of 68 patients. All these patients received iodine replacement therapy at doses ranging from 200 to 300 μg/day throughout pregnancy.

Results

Mean patient age was 31.9 years, and mean TSH level at diagnosis of gestational hypothyroidism was 6.3 ± 2.15 μU/mL. Mean FT4 level was 1.05 ± 0.2 ng/100 mL. Positive antiperoxidase or antithyroglobulin antibodies were found in 36% of patients.

Hypothyroidism was diagnosed during the first trimester in 91.2% (62 patients), in the second trimester in 7.4%
(5 patients), and in the third trimester in 1.4% of patients (one patient).

Among the 62 patients diagnosed and initially treated with 50 μg/day in the first trimester, 26 (42%) and 53 (85.5%) patients respectively achieved TSH levels less than 3 μU/mL and less than 4.5 μU/mL in the second trimester. Among those maintained on a dose of 50 μg/day in the second trimester, 50% achieved TSH levels less than 3 μU/mL in the third trimester. Of the 9 patients in whom levothyroxine dose had to be increased to 75 μU/day in the second trimester, 44.5% (4 patients) achieved TSH levels less than 3 μU/mL in the third trimester, and 100% (9 patients) levels less than 4.5 μU/mL.

When treatment effectiveness was analyzed based on TSH levels at diagnosis, the patients with the highest TSH levels (ranging from 6.37 to 12.59 μU/mL) in the first term of pregnancy, who were also treated with levothyroxine 50 μg/day, were studied. In the second trimester, forty percent of them achieved TSH levels less than 3 μU/mL, 85% TSH levels less than 4 μU/mL, and in the remaining 15%, the dose had to be increased to 75 μg/day because they had levels ranging from 4.5 to 5.5 μU/mL. The results achieved in this group of pregnant women with the highest TSH levels were similar to those seen in patients with subclinical hypothyroidism and less elevated TSH levels. No significant differences were found in the proportion of patients who achieved the target limit of TSH level.

No change in levothyroxine dose of 50 μg/day was required in 79.4% of pregnant women because they had TSH levels in the normal range. Levothyroxine dose had to be increased (to 75 μg/day) in the remaining 20.5%, and this new dose achieved normal TSH levels until the time of delivery in all patients. However, if a TSH level less than 3 μU/mL had been taken as a reference in the second trimester, 58% of pregnant patients would have required an increase in levothyroxine dose to 75 μg/day.

Discussion

In our healthcare area, plasma TSH levels are tested in all pregnant patients in the first trimester. Patients who have increased TSH levels are referred to the endocrinology outpatient clinic. For this reason, the enrolled sample optimally reflected the population it represented. Mean patient age was similar to that of all pregnant women during this period in our healthcare area (unpublished data).

Hypothyroidism was diagnosed in most patients based on tests in the first trimester, despite the fact that TSH levels are usually particularly low at this time. This agrees with data from prior publications, confirms the early occurrence of hypothyroidism during pregnancy, and supports the convenience of testing TSH in the first trimester of pregnancy.

Although no study patient had known hypothyroidism before pregnancy, the prevalence of antithyroid antibodies in our sample was substantial. We suspect that these patients probably had undiagnosed thyroid autonomy before pregnancy, which may have promoted the development of hypothyroidism with pregnancy. The potential role played by iodine supplementation during pregnancy at doses of 200 μg/day, taken by all of our patients and which has been related to maternal thyroid dysfunction in iodine-deficient areas, should be emphasized.

Our data suggest that treating patients diagnosed subclinical hypothyroidism during pregnancy with levothyroxine 50 μg/day is inadequate in more than 20% of cases if TSH levels for the general, non-pregnant population are taken as a reference, and in even more than 50% of pregnant women if we attempt to achieve the TSH values recently recommended for this particular population. This is a very high proportion in a condition where subclinical hypothyroidism has been associated with significant comorbidity and rapid correction is required. An initial dose of 75 μg/day appears adequate if the target plasma TSH level is less than 4.5 μU/mL. Further studies are needed to assess whether this or higher doses are adequate to achieve lower TSH levels which have been suggested as optimal in recent reports.

Conflicts of interest

The authors state that they have no conflicts of interest.

References
