ORIGINAL REPORT

Evaluation of the reproducibility of a protocol for the pharmacokinetic study of breast tumors by dynamic magnetic resonance imaging

J. Etxanoa,*,, A. García-Lallana Valbuenab,, I. Antón Ibáñezc,, A. Elizaldea,, L. Pinaa,, J. García-Foncillasd,, V. Bonid

a Departamento de Radiología, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
b Departamento de Radiología, Hospital San Juan de Dios, Santurce, Vizcaya, Spain
c Progenika Biopharma S.A, Derio, Vizcaya, Spain
d Departamento de Oncología, Clínica Universidad de Navarra, Pamplona, Navarra, Spain

Received 4 September 2012; accepted 26 January 2013

KEYWORDS
Breast cancer; Magnetic resonance imaging; Pharmacokinetics

Abstract

Objective: To evaluate the reproducibility of a protocol for dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the pharmacokinetic study of breast tumors.

Materials and methods: We carried out this prospective study from October 2009 through December 2009. We studied 12 patients with stages II-II invasive breast cancer without prior treatment. Our center’s research ethics committee approved the study. The 12 patients underwent on two consecutive days DCE-MRI with a high temporal resolution protocol (21 acquisitions/minute). The data obtained in an ROI traced around the largest diameter of the tumor (ROI 1) and in another ROI traced around the area of the lesion’s highest K^{trans} intensity (ROI 2) were analyzed separately. We used parametric and nonparametric statistical tests to study the reproducibility and concordance of the principal pharmacokinetic variables (K^{trans}, K_{ep}, V_a and AUC\text{90}).

Results: The correlations were very high ($r = .80; P < .01$) for all the variables for ROI 1 and high ($r = .70-.80; P < .01$) for all the variables for ROI 2, with the exception of V_a both in ROI 1 ($r = .44; P = .07$) and in ROI 2 ($r = .13; P = .235$). There were no statistically significant differences between the two studies in the values obtained for K^{trans}, K_{ep} and AUC\text{90} ($P > .05$ for each), but there was a statistically significant difference between the two studies in the values obtained for V_a in ROI 2 ($P = .008$).

Conclusions: The high temporal resolution protocol for DCE-MRI used at our center is highly reproducible for the principal pharmacokinetic constants of breast.

© 2012 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

* Please cite this article as: Etxano J, García-Lallana Valbuena A, Antón Ibáñez I, Elizalde A, Pina L, García-Foncillas J, et al. Evaluación de la reproducibilidad de un protocolo de resonancia magnética dinámica para el estudio farmacocinético de los tumores de mama. Radiología. 2015;57:44-49.

* Corresponding author.

E-mail address: jetxano@unav.es (J. Etxano).

2173-5107/S - see front matter © 2012 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Introduction

The dynamic magnetic resonance imaging (DMR) with IV contrast is one image modality more and more widely used in daily practice. Its indication in high risk patients, the preoperative staging of breast cancer, the hidden breast cancer, the detection of relapses and for the evaluation of the neoadjuvant chemotherapy 1-3 are very well known. Because it is based on neoangiogenesis DMR allows the functional assessment of tumors different than conventional modalities—mammography and ultrasound that are only morphological.

The actual protocols have a high spatial (with cutting thickness close to 1 mm) and temporal resolution (acquisition in approximately 60 s) that allow us to do semiquantitative dynamic studies based on the curves of signal/time intensity. However if temporal resolution is increased the vascular patency can be determined by quantifying pharmacokinetic parameters that describe the passing of contrast from vascular space to the tumor interstitial compartment. 4 To that end it is also necessary to have a specific software capable of estimating these pharmacokinetic parameters.

There are many protocols of pharmacokinetic study with DMR reported in the reference (Table 1). 5-12 Some of them have even been modified along the study. 10 This technical variability can also make the value of pharmacokinetic parameters change—something necessary to study the reproducibility of different protocols.

The goal of this study is to evaluate the reproducibility and concordance of data obtained through a DMR protocol optimized for the pharmacokinetic study of stages II-III-breast tumors after the administration of neoadjuvant chemotherapy.

Materials and methods

Patients

Between October and December 2009 we performed one prospective study in our center including 12 treatment naive patients with confirmed histological diagnosis of infiltrating stages II-III breast cancer. These 12 patients were part of a phase 2 multicenter clinical trial including 12 hospitals (clinical trial code MLZ2197/2009-01) sponsored by F. Hoffman-La Roche. This trial enrolled 76 patients and assessed the predictive markers to treatment response with the antiangiogenic drug bevacizumab (Avastin®, F. Hoffman-La Roche, Basel, Switzerland) and neoadjuvant chemotherapy (docetaxel plus adriamycin) in patients with locally advanced breast cancer. In Table 2 the criteria for the inclusion of patients in the study can be seen. The study protocol was approved by the ethical committee of our hospital and all patients gave their informed written consent.

Technique

To validate the DMR protocol two daily examinations were performed in two consecutive days with identical technical parameters and the patients did not follow any therapies between both examinations. The MRI protocol can be seen in Table 3.

The DMR was performed in one 1.5 T resonance (Magnetom Symphony®, Siemens Healthcare, Erlangen, Germany). T1-weighed standard f3D echo-spin gradient-enhanced images were modified in an attempt to improve its spatial resolution (150 measurements instead of 6 in a total of 7 min per test with approximately 21 acquisitions per
Table 1 DMR protocols in the reference.

<table>
<thead>
<tr>
<th>Study</th>
<th>Protocol</th>
<th>View</th>
<th>Voxel size</th>
<th>Number of acquisitions</th>
<th>Total time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah See et al. (2008)</td>
<td>1</td>
<td>Sagittal</td>
<td>0.8 mm(^a)</td>
<td>40</td>
<td>8 min 5 s</td>
</tr>
<tr>
<td>Loo et al. (2011)</td>
<td>1</td>
<td>Coronal</td>
<td>1.2 mm × 1.2 mm × 1.6 mm</td>
<td>5</td>
<td>7 min 30 s</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Coronal</td>
<td>1.1 mm × 1.1 mm × 1.2 mm</td>
<td>5</td>
<td>7 min 30 s</td>
</tr>
<tr>
<td>Tateishi et al. (2012)</td>
<td>1</td>
<td>Sagittal</td>
<td>1.3 mm × 1.3 mm × 0.8 mm</td>
<td>24</td>
<td>4 min</td>
</tr>
<tr>
<td>Rahbar et al. (2012)</td>
<td>1</td>
<td>Axial</td>
<td>0.9 mm × 1.1 mm × 2.2 mm</td>
<td>5</td>
<td>7 min 30 s</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Axial</td>
<td>0.8 mm × 0.9 mm × 1.6 mm</td>
<td>3</td>
<td>7 min 30 s</td>
</tr>
<tr>
<td>Johansen et al. (2009)</td>
<td>1</td>
<td>Sagittal</td>
<td>1.9 mm × 1 mm × 3-4 mm(^b)</td>
<td>6-7</td>
<td>5 min 42-6 min 39 s</td>
</tr>
<tr>
<td>Partridge et al. (2010)</td>
<td>1</td>
<td>Sagittal</td>
<td>1 mm × 1 mm × 2.2 mm</td>
<td>3</td>
<td>4 min 30 s</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Sagittal</td>
<td>0.8 mm × 0.8 mm × 1.6 mm</td>
<td>3</td>
<td>6 min</td>
</tr>
<tr>
<td>El Khouli et al. (2011)</td>
<td>1</td>
<td>Axial</td>
<td>1.3 mm × 1.3 mm × 5 mm</td>
<td>14</td>
<td>2 min 30 s</td>
</tr>
<tr>
<td>Baar et al. (2009)</td>
<td>1</td>
<td>Axial</td>
<td>2.3 mm × 2.7 mm × 8 mm</td>
<td>180</td>
<td>24 min</td>
</tr>
</tbody>
</table>

DMR: dynamic magnetic resonance imaging.
\(^a\) This value corresponds to the cutting thickness; the article says nothing about the matrix or the FOV used.
\(^b\) The protocol was applied to twelve (12) study patients with a cutting thickness of 3 mm and to some other 12 with a cutting thickness of 4 mm.

Table 2 Inclusion criteria.*

- Women between 18 and 70 years old
- Breast cancer histologically tested through skin biopsy
- Stage I or II, naïve to prior therapies
- Eastern Cooperative Oncology Group (ECOG) categories 0 to 1
- Left ventricular ejection fraction (LVEF) ≥ 50% with no signs of cardiac failure

in all patients–the tumor was found through an ultrasound and its location marked on their skin to be able to identify it in the location sequence of the MRI. After the acquisition of three images without IV contrast one bolus of 8 ml gadobutrol (Gadovist\(^\text{®}\), Bayer-Schering Pharma AG, Berlin, Germany) at 4 ml/s was automatically injected using one automatic injector after which 147 dynamic images could be obtained. Finally subtraction images of lesions were generated.

Images were processed with one specific software (TIS-SUE 4D\(^\text{®}\), Siemens Healthcare, Erlangen, Germany) capable of evaluating the dynamic uptake of tumor contrast by calculating the pharmacokinetic values in the bicompartimental model of Tofts et al.\(^{19}\). To assess the concentration of blood contrast or arterial input function (AIF), the software used offers three pre-established categories (quick, intermediate, and slow). Given the high temporal resolution of our protocol, the category «quick» was used as the default one in all patients. The following values were analyzed: (1) \(K_{trans}\): constant of transendothelial transference. It measures the passing of contrast from the intravascular space to the extracellular space of tumor or in other words it is one measurement for the patency and blood flow of tumor vessels; (2) \(K_{ep}\): constant relating the passing of contrast from the tumor extracellular space to the intravascular one. It is the reverse constant to \(K_{trans}\), and is related to tumor washout; (3) \(V_c\): fraction of tumor volume occupied by the extracellular space; and (4) \(AUC_{90}\): area under the curve of signal intensity through time showing variation in tumor blood volume. It was estimated at 90 s which is the standard value of the software used. These parameters are related through the equation \(K_{ep} = K_{trans}/V_c\).

In each and every of the two DMR two regions of interest (ROI) were drawn – one of them around the maximum diameter of lesion in subtraction images (ROI 1) and the other one with the smallest possible standardized size in the region of maximum \(K_{trans}\) value (ROI 2) that we could identify by analyzing the \(K_{trans}\) lesion map of colors without software (Fig. 1). In both cases we measured twice to assess the average values of \(K_{trans}\), \(K_{ep}\), \(V_c\) and \(AUC_{90}\). We chose the \(K_{trans}\) map because in the reference this value is

Table 3 Dynamic magnetic resonance protocol with IV contrast.

<table>
<thead>
<tr>
<th>Magnetic resonance</th>
<th>1.5 T (Magnetom Symphony(^\text{®}), Siemens Healthcare, Erlangen, Germany)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>T1-weighed standard f3D echo gradient</td>
</tr>
<tr>
<td>View</td>
<td>Coronal</td>
</tr>
<tr>
<td>Acquisition</td>
<td>Caudo-cranial</td>
</tr>
<tr>
<td>Fat saturation</td>
<td>Without fat-sat pulse</td>
</tr>
<tr>
<td>TR/TE</td>
<td>4.3/1.29</td>
</tr>
<tr>
<td>FoV</td>
<td>320 mm</td>
</tr>
<tr>
<td>Cutting thickness</td>
<td>4 mm</td>
</tr>
<tr>
<td>Matrix</td>
<td>256 × 256</td>
</tr>
<tr>
<td>Acceleration</td>
<td>×2 GRAPPA</td>
</tr>
<tr>
<td>Flip angle</td>
<td>12°</td>
</tr>
<tr>
<td>Number of measure-</td>
<td>150</td>
</tr>
<tr>
<td>Number of cuts per block</td>
<td>2</td>
</tr>
<tr>
<td>Total acquisition</td>
<td>7.08 min</td>
</tr>
</tbody>
</table>
considered to be one of the most relevant ones for the study of changes in neoangiogenesis and the response to neoadjuvant chemotherapy. Only one radiologist (LJP) highly experienced in performing DMR did the readings of all the cases.

Analysis

To study the reproducibility and concordance of the outcomes obtained parametric statistical tests (interclass correlation coefficient and the Student’s t test for paired samples) and non-parametric tests were used (Spearman’s rho and Wilcoxon rank-sum test) with the software SPSS® v.15.0 (Chicago, Illinois, U.S.A.) Prior to this the normality of ROI 1 and ROI 2 variables through the Kolmogorov–Smirnov and Shapiro–Wilk tests was analyzed. $P < 0.05$ was considered significant.

Results

The average maximum diameter of tumors through MRI was 35 mm with a rank between 14 and 100 mm. The four variables showed one normal distribution in ROI 1. In ROI 2 only in K_{ep} and V_e the distribution was normal. The outcomes of the statistical analysis can be seen in Table 4. Very high correlations ($r > 0.80; p < 0.01$) between the 2 DMR were found in all ROI 1 variables and high correlations ($r = 0.70–0.80; p < 0.01$) were found in all ROI 2 variables with the exception of V_e both in ROI 1 ($r = 0.44; p = 0.07$) and ROI 2 ($r = 0.13; p = 0.23$). The average ROI 1 concordance was higher than that of ROI 2 ($r = 0.77 vs r = 0.60$). There were no statistically significant differences between both studies for the K^{trans}, K_{ep} and AUC_{90} values obtained ($p > 0.05$ for all) but there were statistically significant differences for V_e values obtained in ROI 2 ($p = 0.008$).

Discussion

In our study we showed that with our high temporal resolution and reduced spatial resolution DMR protocol the concordance of the main pharmacokinetic variables is really good except for variable V_e. The analysis of angiogenesis through DMR in breast tumors is hot at the moment. The reduced tumor neovascularization is one of the most widely studied therapeutic targets during the last years and one of the most promising ones in the neoadjuvant therapy of breast cancer. Hence the importance of the analysis of evolutionary changes occurring in tumor neovascularization for which DMR is the most adequate DMR. In our study we did not find statistically significant differences in any variables between the two consecutive tests except for V_e in ROI 2. Concordance of all variables has been high (ROI 2), or very high (ROI 1), except for V_e values. It is possible that the fact of using a predetermined value of non-adjusted AIF for every study might have influenced the poor concordance found in both cases for V_e. The software used does not offer the possibility of performing a study prior to the contrast bolus for the analysis of real AIF. According to Leach et al. it is possible to measure the real AIF before the bolus but this increases the time and complexity of the study. Measuring it requires injecting a small amount of contrast media (around 10%) and one optimized image protocol. Another alternative is measuring AIF in one non-tumor region (e.g. muscular tissue) with known pharmacokinetics properties. However to analyze the importance of this study we need to highlight that the most important constants for the analysis of changes in tumor neovascularization are those that have to do with patency and the passing of contrast through the endothelial membrane ($K^{\text{trans}}, K_{\text{ep}}$).

We also performed the segmented analysis of data obtained thanks to one ROI drawn through the tumor...
perimeter and another ROI including the area of maximum intensity of K^{trans}. It is significant to see how in all cases the concordance of ROI 1 variables is greater than its corresponding ROI 2. This might be due to the fact that while drawing the edges of ROI 2 we rely upon the color map provided by K^{trans} and the outlining of edges is more inaccurate. The data obtained in our study seem to indicate that quantification measured through one ROI drawn around the maximum diameter of lesion in subtraction images; ROI 1: region of interest drawn around the maximum diameter of lesion in subtraction images; ROI 2: region of interest drawn in the region of maximum value of K^{trans} identified through K^{trans} color map of the lesion provided by the software; V_c: fraction of tumor volume occupied by extravascular space.

For the study of pharmacokinetic parameters of smaller tumors the modification of the protocol with a greater spatial resolution and lower temporal resolution could be considered.

In sum the protocol we presented for the assessment of the pharmacokinetic constants of breast tumors is highly reproducible for the values of K^{trans}, K_{ep} and AUC_{90}, with a higher concordance when assessing the ROI of the tumor maximum diameter. However it does not seem to be adequate for the V_c pharmacokinetic constant even though this result needs to be re-analyzed with a larger number of patients.

Ethical responsibilities

Protection of humans and animals. Authors confirm that all proceedings and experiments followed relate to the committee of responsible human experimentation ethical rules and regulations in compliance with the World Medical Association and the Declaration of Helsinki.

Data confidentiality. Authors confirm that the protocols of their centers have been followed on matters concerning the publishing of data from patients. They also confirm that all patients included in this study have been given enough information and handed over their written informed consent for their participation in this study.

Right to privacy and informed consent. Authors confirm that they have obtained the written informed prior consent from patients and/or subjects appearing in this article. This document is in the possession of the corresponding author.

Table 4 Statistical results.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Student's t test for paired samples</th>
<th>CCI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median 1</td>
<td>Median 2</td>
</tr>
<tr>
<td>ROI 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K^{trans}</td>
<td>133.04</td>
<td>134.20</td>
</tr>
<tr>
<td>K_{ep}</td>
<td>291.92</td>
<td>271.80</td>
</tr>
<tr>
<td>V_c</td>
<td>498.83</td>
<td>513.21</td>
</tr>
<tr>
<td>AUC_{90}</td>
<td>14.50</td>
<td>13.15</td>
</tr>
<tr>
<td>ROI 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K^{trans}</td>
<td>401.33</td>
<td>374.00</td>
</tr>
<tr>
<td>K_{ep}</td>
<td>610.80</td>
<td>733.46</td>
</tr>
</tbody>
</table>

AUC_{90}: area under the curve of signal intensity throughout time.
Calculated at 90 s; CCI: intraclass correlation coefficient; K_{ep}: constant of contrast passing from the tumor extravascular space toward the intravascular space; K^{trans}: constant of transendothelial transport from the intravascular space toward the extracellular tumor space; ROI 1: region of interest drawn around the maximum diameter of lesion in subtraction images; ROI 2: region of interest drawn in the region of maximum value of K^{trans} identified through K^{trans} color map of the lesion provided by the software; V_c: fraction of tumor volume occupied by extravascular space.
Author’s contributions

1. Manager of the integrity of the study: JE and LP.
2. Original Idea of the Study: JE and LP.
3. Study Design: JE, LP and JGF.
4. Data Mining: JE, LP, JGF and VB.
5. Data Analysis and Interpretation: JE and LP.
6. Statistical Analysis JE, IA and AGL.
7. Reference Search: JE, AGL, AE and LP.
8. Writing: JE, IA, AE, AGL and LP.
9. Manuscript critical review with intellectually relevant contributions: IA, AGL, JGF and VB.
10. Final Version Approval: JE, AGL, IA, AE, JGF, VB and LP.

Conflict of interest

The lab Roche Pharma sponsored the MRI studies presented in this work.

References