Late diagnosis of posterior urethral valves


Sección de Urología Pediátrica, Servicio de Cirugía Pediátrica, Hospital Infantil Gregorio Marañón, Madrid, Spain

Abstract
Clinical problem: We diagnosed 8 patients with late-stage posterior urethral valves (PUV) between 1 and 14 years of age. Five patients complained of symptoms related to voiding dysfunction. The other 3 patients required urethroscopy for other reasons (hypospadias fistulae, difficulty with catheterisation and high-grade vesicoureteral reflux [VUR]). A second review of the first 2 patients’ medical history showed voiding dysfunction symptoms. All patients underwent preoperative ultrasonography: 3 patients had normal results and 5 had renal or vesical disorders. The diagnosis was reached through voiding cystourethrogram (VCUG), and 4 patients underwent urodynamic studies. The diagnosis was confirmed by urethroscopy, performing valve electrofulguration. We performed urethroscopy during the check-ups at 3–6 weeks and observed no stenosis. The symptoms disappeared for all patients after 20 months of follow-up. The patient with VUR was cured. The ultrasounds showed no progression of the renal involvement and showed improvement in the vesical involvement. The velocimetry during check-ups presented curves within normal ranges.

Discussion: Most children with PUV are diagnosed through ultrasound during the neonatal period. Some patients present PUV at later ages with diverse symptoms, which impedes its diagnosis. We should suspect PUV in male patients with symptoms of voiding dysfunction, either when they have normal or pathological results from ultrasounds or VCUG. We recommend performing urethroscopy to rule out urethral obstruction.

© 2015 AEU. Published by Elsevier España, S.L.U. All rights reserved.

PALABRAS CLAVE
Válvulas de uretra posterior; Disfunción de vaciado; Uretrocistoscopia; Electrofulguración

Válvulas de uretra posterior de diagnóstico tardío

Resumen
Problema clínico: Diagnosticamos 8 pacientes de forma tardía de válvulas de uretra posterior (VUP) entre 1 y 14 años. Cinco pacientes consultaron por sintomatología relacionada con disfunción del vaciamiento vesical. Los otros 3 precisaron una uretroscopia por otro motivo (fistula de hipospadias, dificultad de sondaje y RVU de alto grado), y al rehistoriar a los 2 primeros también presentaban sintomatología de disfunción de vaciado. Todos tenían ecografías preoperatorias: 3 fueron normales y 5 patológicas, con alteraciones a nivel renal o vesical.

* Please cite this article as: Zornoza M, Angulo JM, Parente A, Simal S, Burgos L, Ortiz R. Válvulas de uretra posterior de diagnóstico tardío. Actas Urol Esp. 2015;39:646–650.
* Corresponding author.
E-mail address: mariazornoza@gmail.com (M. Zornoza).

2173-5786/© 2015 AEU. Published by Elsevier España, S.L.U. All rights reserved.
Clinical problem

We present 8 patients diagnosed with late posterior urethral valves (PUV) at our center over the last 4 years (2009–2013). The age at which they were diagnosed with PUV was between 1 and 14 (median 6 years and a half). The reason why patients consulted was very diverse (Table 1), 5 of them presenting symptoms of voiding dysfunction. Patient 6 was controlled in outpatient clinics for high-grade vesicoureteral reflux, in which it was decided to perform endoscopic treatment of reflux. Patients 7 and 8 consulted for other reasons that required performing an exploratory urethrocystoscopy, and by rehistoring parents, children also had symptoms of dysfunctional emptying.

With regard to preoperative imaging tests (Table 1), all patients had ultrasound before surgery. In 3 patients they were normal and in the other 5 they were pathological, finding changes at the kidney and bladder level (Fig. 1). In patients with renal parenchymal involvement, renal scan was performed showing significant decrease in differential renal function. Serial voiding cystourethrogram (SVCUG) was performed in 6 out of 8 patients. In 2 patients, a significant dilation of the posterior urethra was observed (Fig. 2), but in all studies we found pathological findings. In 4 patients with symptoms of voiding dysfunction, urodynamic studies were performed.

In all patients, the presence of PUV was confirmed by urethrocystoscopy, which were electrofulgurated (Fig. 3). To control the caliber of the urethra, a new urethrocystoscopy between 3 and 6 weeks (median 4 weeks) was performed after the first surgical procedure. In all patients, a urethra of good caliber was observed.

After more than a year of follow-up (mean 20 months), 100% of symptomatic patients have presented symptom disappearance. The child who had difficulty for probing initially presented persistent leaks, but to a lesser degree, and they have been controlled with a low dose of anticholinergics. The patient with high-grade VUR (patient 6) remained without infections and absence of reflux by SVCUG was found.

In all patients, ultrasound scans were performed, and in none of the children with renal involvement was there progression thereof. In patients with bladder wall thickening it decreased, although they do not yet present images compatible with normality. Flowmetries were performed and all presented curves within normality.

Discussion

PUVs are the most common cause of congenital obstruction of the urethra.1,2 Currently, prenatal ultrasound diagnoses the vast majority of cases of PUV,1,3 but sometimes, when the obstruction is mild, the ultrasound signs are more subtle and may go unnoticed.1,2 This group of patients is usually diagnosed at later ages, because symptoms do not appear until the bladder dysfunction secondary to prolonged obstruction of the urethra is observed.4,5

In our review, the median age at which the patients were diagnosed was 5, slightly lower than in other articles.1,2,5 In symptomatic patients, the most frequent symptom was daytime incontinence, as in other series.2,5

Ultrasound is basic in the initial study given the suspicion of lower urinary tract obstruction1 due to its high sensitivity and specificity. The alterations found were at 2 levels: alterations of the upper urinary tract (renal parenchymal involvement or dilation of the urinary tract) due to retrograde increase of pressure, and bladder disorders (increased thickness greater than 5 mm and of the trabeculation of the bladder wall), because of increasing collagen and detrusor muscle fibers, secondary to prolonged obstruction.1 We recommend applying for ultrasound before the beginning of the conservative treatment of voiding dysfunction,1,5 and not only if we have not achieved an improvement in symptoms. In patients with ultrasound renal impairment, renal function should be documented by scintigraphy (DMSA) to know the degree of renal impairment from which we start and to be able to compare the evolution during the follow-up.7

The next test to apply for is the SVCUG.1,5 The most typical finding is the dilation of the posterior urethra,7 which in our study was found only in 2 children. Other common findings that we found in our patients are, like those published in the literature,1 vesicoureteral reflux, trabeculated bladder, bladder diverticula, and urethral obstruction, or at the level of the sphincter. SVCUG remains the gold standard test for evaluating the urethra, it also provides data on the bladder and removes the operating factor dependent on ultrasound testing.9
<table>
<thead>
<tr>
<th>Patient</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>10</td>
<td>5</td>
<td>14</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Reason for consultation</td>
<td>Voiding dysfunction</td>
<td>Voiding dysfunction</td>
<td>Voiding dysfunction</td>
<td>Voiding dysfunction</td>
<td>Repeat UTI</td>
<td>VUR (prenatal diagnosis)</td>
<td>Probing difficulty</td>
<td>Hypospadias fistula</td>
</tr>
<tr>
<td>Voiding dysfunction symptoms</td>
<td>Urge incontinence</td>
<td>IBC UTI incontinence</td>
<td>Enuresis incontinence</td>
<td>Hematuria</td>
<td>Enuresis UTI (APN)</td>
<td>Incontinence</td>
<td>Incontinence</td>
<td></td>
</tr>
<tr>
<td>Ultrasound</td>
<td>Left HN Trabeculated bladder Detrusor hypertrophy Detrusor hypertrophy</td>
<td>Small-sized LK, poor differentiation, scars</td>
<td>Normal</td>
<td>Bilateral HN Trabeculated bladder</td>
<td>Bilateral parenchymal echogenicity Thickened bladder wall</td>
<td>Right UHN small-sized RK, thinned parenchyma</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>Trabeculated bladder Posterior urethral dilation</td>
<td>Left II VUR High residue</td>
<td>Very big bladder Detrusor hypertrophy Posterior urethral dilation</td>
<td>Normal</td>
<td>Bilateral VUR Fighting bladder Urethra is not observed</td>
<td>Right VUR iv Normal urethra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVCUG</td>
<td>Trabeculated bladder Posterior urethral dilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left kidney DRF: 12%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voidsynergy dysfunction: low bladder capacity (200 cc) Low accommodation Not inhibited contractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left kidney DRF: 12%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urodynamic studies</td>
<td>Voiding dysfunction</td>
<td>Voiding dysfunction</td>
<td>Not valuable for lack of collaboration</td>
<td>Normal</td>
<td></td>
<td></td>
<td>Pathological uroflowmetry: urethral stricture</td>
<td></td>
</tr>
</tbody>
</table>

UTI, urinary tract infection; VUR, vesicoureteral reflux; IBC, intermittent bladder catheterization; APN, acute pyelonephritis; HN, hydronephrosis; LK, left kidney; UHN, ureterohydronephrosis; RK, right kidney; DRF, differential renal function.
Late diagnosis of posterior urethral valves

In the study of patients with symptoms of dysfunctional voiding, we performed uroflowmetries with waste measurement. Currently, the recommendation of the International Continence Society in Children \(^{10}\) is to reduce as far as possible invasive urodynamic studies, partly because of the great limitation thereof.

The definitive diagnosis in all patients was through urethrocystoscopy, and ablation of the valves was performed by electrofulguration. Although there are other methods for ablation of valves, \(^{11,12}\) it has not been shown that one of them exceeds the other, except for laser, \(^{13}\) which appears to be slightly better.

As a control after ablation of the valves, it was classically recommended to perform SVCUG between one and six months after surgery, \(^{1,7,11,12,14}\) and in patients with some alteration in the test to repeat urethrocystoscopy to assess urethral stenoses or valve remains that can be electrocoagulated again. Currently, the real capacity of the SVCUG is questioned for detecting valve remains and alterations in the urethral caliber. \(^{14,15}\) We recommend making a new urethrocystoscopy at 4 weeks \(^{7}\) without SVCUG: it is an outpatient procedure with no morbidity, new radiation-free, and it allows us to confirm de visu the caliber of the urethra and the presence of some residue of PUV.

The symptoms do not always disappear, \(^{1,5}\) and there can be complete resolution, partial improvement, or persistence of symptoms. Of our symptomatic patients, \(^{6}\) had disappearance of symptoms and in one they improved associating conservative treatment of voiding dysfunction, achieving after an average of 20 months of follow-up the disappearance of symptoms.

Currently, there is controversy about the prognosis of children with posterior urethral valves of delayed presentation. Until recently, it was thought that early diagnosis had a worse prognosis. \(^{9}\) Today opinions are contradictory: it is true that they begin with mild obstructive symptoms that if recognized and treated, it is possible to limit the loss of renal function \(^{1,10}\) and improve symptoms, \(^{1,11}\) but several studies, \(^{12}\) associate this form of presentation to a higher rate of terminal renal disease and bladder dysfunction. \(^{12}\) This happens if the obstructive cause is not removed, so we recommend that in a male patient with symptoms of dysfunctional emptying that does not improve with conservative treatment, with normal or pathological ultrasound or SVCUG a urethrocystoscopy that allows us to rule out urethral obstruction is performed.

**Figure 1** The ultrasound findings in patients with PUV are found at 2 levels: changes in the kidney (patient with left renal hypoplasia: right kidney of 88 mm and left kidney of 40 mm) and in the bladder (thickening of the bladder wall of 9.3 mm).

**Figure 2** Characteristic image of PUV in SVCUG: posterior urethral dilation.
Conflict of interest

The authors declare that they have no conflict of interest.

References