Short communication

Antiangiogenic therapy in Sorsby’s fundus dystrophy without a mutation in the TIMP-3 gene

S. Copete-Piqueras*, C. Cava-Valenciano, I. Flores-Moreno, A. Moreno-Valladares, V. Bautista Ruescas

Servicio de Oftalmología, Complejo Hospitalario Universitario de Albacete, Albacete, Spain

ABSTRACT

Case report: The case is presented of a 32-year-old man referring to metamorphopsia and blurred vision in both eyes for 3 days. Best corrected visual acuity of 20/32 was found in the right eye and 20/25 in the left eye. Fundus examination revealed the presence of drusen-like deposits, suggestive of Sorsby’s fundus dystrophy (SFD) and choroidal neovascularization (CNV) bilaterally. The patient received intravitreal ranibizumab. Visual acuity improved to 20/20 in both eyes at 6-month follow-up, and results of fundus examination showed complete regression of neovascularization. No mutations were found in the TIMP-3 gene.

Discussion: The known mutations in TIMP-3 may not be extended to all patients with SFD. The use of intravitreal ranibizumab may be considered as a therapeutic option in CNV secondary to SFD.

© 2011 Sociedad Española de Oftalmología. Published by Elsevier España, S.L. All rights reserved.

Tratamiento antiangiogénico en fondo de distrofa de Sorsby sin mutación en gen de TIMP-3

RESUMEN

Caso clínico: Varón de 32 años, con metamorfopsias y visión borrosa bilateral de tres días de evolución. Mejor agudeza visual corregida de 20/32 en OD y 20/25 en OS. La fundoscopía presenta lesiones amarillentas difusas sugerentes de distrofa de Sorsby y membranas neovasculares (MNV). Recibió tratamiento con ranibizumab intravitreo, mejorando la agudeza visual a 20/20 en ambos ojos y remitiendo las MNV. No se hallaron mutaciones conocidas de TIMP-3.

Discusión: Las mutaciones conocidas en TIMP-3 pueden no estar extendidas a todos los pacientes con fondo de distrofa de Sorsby. El ranibizumab intravitreo debe considerarse para el tratamiento de MNV secundaria a esta enfermedad.

© 2011 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L. Todos los derechos reservados.

* Corresponding author.
E-mail address: sergioab@hotmail.com (S. Copete-Piqueras).

2173-5794/$ – see front matter © 2011 Sociedad Española de Oftalmología. Published by Elsevier España, S.L. All rights reserved.
Introduction

Sorsby’s pseudo-inflammatory disease or pseudo-inflammatory macular dystrophy is a rare disease transmitted through dominant autosomal inheritance. It was first described in 1949 by Sorsby et al. and is characterized by the bilateral presence of yellowish lesions (pseudo-drusen) in the posterior pole and equator from early stages. It generally expresses between the fourth and fifth decade of life in the form of nyctalopia or more frequently as bilateral central visual acuity loss secondary to the development of aggressive neovascular membranes (NVM) which give rise to edema, hemorrhage and exudates in the macular area. It generally causes severe visual acuity loss due to the development of disk-shaped scars produced by NVM or the formation of retinal atrophy areas in older patients.

Sorsby’s ocular fundus dystrophy has been associated to mutations in the genes which code TIMP-3 (natural tissue inhibitor of metalloproteinases type 3), the main function of which is carried out in Bruch membrane. This situation causes its deposit on said membrane, giving rise to the characteristic spots of the disease and altering proteolysis, thus increasing the risk of generating NVM and atrophy areas.

Case report

A male, 32, was referred for metamorphopsia and subjective visual acuity reduction in both eyes (BE) with onset 3 days before. The patient did not refer personal history of interest or toxic habits and was not able to describe the family history because he was adopted when he was 6 months old. The best corrected visual acuity (BCVA) was of 0.6 in RE and 0.8 in LE. No alterations in intrinsic ocular motility were found. Similarly, no alterations were found and biomicroscopy and the presence of inflammatory signs in the anterior pole were discarded. IOP was within normal limits.

Funduscopy revealed the presence of diffused yellowish deposits (pseudo-drusen) in the macular region (Figs. 1 and 2) and above all in the mid periphery (Fig. 3). Two lesions were found in each eye related to macular subretinal NVM in BE accompanied by edema, hemorrhage and exudate.

OCT confirmed the presence of subretinal liquid (SRL) surrounding the lesions and suggestive of NVM, partially preserving the foveal profile.

Angiography (Fig. 4) evidenced progressive exudation in the NVM from early stages, partially hidden by the screening effect of the hemorrhage and associated to window effect in the pseudo-drusen. Autofluorescence did not exhibit atrophy areas but the diffused yellowish deposits exhibited hyperfluorescence against the rest of the retina.

After discarding infectious pathology, bilateral treatment was established with a single injection of intravitreal ranibizumab.

The genetic study discarded known mutations in axon 5 of gene 22.12.3, in charge of encoding TIMP-3.

At month one of the treatment the patient did not refer metamorphopsia and his BCVA improved up to 0.9 in BE, with diminished presence of SRL in OCT. Accordingly, it was decided not to administer a second treatment and maintain monthly follow-up.

At month 3 the SRL resolved completely (Fig. 5).

After 6 months follow-up the patient referred no visual symptoms and exhibited BCVA of one in BE. No new lesions or atrophy areas have appeared (Fig. 6) and OCT showed no signs of SRL or images evidencing NVM.

Fig. 1 – Right eye posterior pole at first exploration, showing yellowish lesions and 2 NVM that produce exudation, hemorrhage and edema. OCT confirmed the presence of subretinal liquid and a partially preserved foveal appearance.

Fig. 2 – LE retinograph, in less evolved stage and with a higher number of yellowish lesions. In addition, it shows 2 lesions that impressed as NVM and had to be confirmed with angiography. OCT reveals the presence of subretinal liquid but in a smaller amount than in the RE.
Fig. 3 – Detail of the mean LE periphery with the presence of numerous yellowish deposits of higher density and concentration than the posterior pole deposits.

Discussion

A variety of mutations have been described in the genes that encode TIPM-3 associated to Sorsby’s disease. However, the same characteristics have been found in the ocular fundus of patients who do not carry said mutations. This could be explained by the existence of unknown mutations in TIMP-3 regulating genes or another disease with the same phenotype. It must be emphasized that in this case it was impossible to determine the family antecedents of our patient.

Differential diagnosis of Sorsby’s disease ocular fundus dystrophy must be carried out with diseases capable of producing similar pigmented deposits in the ocular fundus such as central and vitelliform areolar choroidal dystrophy and the diseases that cause NVM such as ARMD and family drusen, in addition to the situations that produce retinal atrophy and a range of infectious or inflammatory processes.

The diagnosis must include angiograph in which yellowish spots represent window effect and the presence thereof discards the existence of NVM. In addition, autofluorescence would be useful to follow the evolution of the atrophic lesions. The development of OCT has become a fundamental test for follow-up, with the possibility of carrying out angiographs when alterations suggesting NVM are found.

The appearance of NVM involves a poor visual prognosis, particularly if they appear in the macular area, due to their aggressiveness and high recurrence rates. A number of techniques have been described for treating NVM, particularly argon laser and photodynamic therapy which do not produce good visual results and exhibit high relapse rates. The development of antiangiogenics has brought about a promising framework to control the symptoms of this disease as it has produced good results even with systemic treatment. Even so, in NVM secondary to Sorsby’s fundus dystrophy, intravitreal injection is preferable.

Fig. 5 – Appearance at month 3 of treatment, with complete resolution of hemorrhages, exudates and subretinal liquid, showing a hyperpigmented area in the former lesion area. OCT reveals significant improvement and full reabsorption of the subretinal liquid. Pseudo-drusen persists in ocular fundus.

Fig. 4 – RE angiograph in early times (left) and late times (right), showing progressive exudation in the areas which impressed as NVM. In addition, hyperfluorescence of the ocular fundus yellowish lesions is observed with the window effect.
Fig. 6 – LE autofluorescence showing hyper-fluorescent lesions corresponding to diffuse deposits and NVM scars. No atrophic plates can be identified.

Conflict of interests

No conflict of interests has been declared by the authors.

REFERENCES