Use of a Minimally Invasive Uncalibrated Cardiac Output Monitor in Patients Undergoing Cesarean Section under Spinal Anesthesia: Report of Four Cases

Fernando Bliacheriene, TSA 1, Maria José Carvalho Carmona, TSA 2, Cristina de Freitas Madeira Barretti 3, Cristiane Maria Federicci Haddad 3, Elaine Soubhi Mouchalwat 3, Maria Rita de Figueiredo Lemos Bortolotto 4, Rossana Pulcinelli Vieira Francisco 5, Marcelo Zugaib 6

Background and Objectives: Hemodynamic changes are observed during cesarean section under spinal anesthesia. Non-invasive blood pressure (BP) and heart rate (HR) measurements are performed to diagnose these changes, but they are delayed and inaccurate. Other monitors such as filling pressure and cardiac output (CO) catheters with external calibration are very invasive or inaccurate. The objective of the present study was to report the cardiac output measurements obtained with a minimally invasive uncalibrated monitor (LiDCO rapid) in patients undergoing cesarean section under spinal anesthesia.

Case report: After approval by the Ethics Commission, four patients agreed to participate in this study. They underwent cesarean section under spinal anesthesia while at the same time being connected to the LiDCO rapid by a radial artery line. Cardiac output, HR, and BP were recorded at baseline, after spinal anesthesia, after fetal and placental extraction, and after the infusion of oxytocin and metaraminol. We observed a fall in BP with an increase of HR and CO after spinal anesthesia and oxytocin infusion; and an increase in BP with a fall in HR and CO after bolus of the vasopressor.

Conclusions: Although this monitor had not been calibrated, it showed a tendency for consistent hemodynamic data in obstetric patients and it may be used as a therapeutic guide or experimental tool.

Keywords: Anesthesia, Spinal; Monitoring, Intraoperative; Hemodynamics; Cardiac Output; Hypotension; Cesarean Section.

INTRODUCTION

Spinal anesthesia has been consolidating as the technique of choice for cesarean section worldwide 1 due to the quality of the blockade and safety of the technique, using small anesthetic mass and not requiring ventilatory assistance and tracheal intubation.

However, it produces a non-selective blockade: the synapses in sensorial, motor, and autonomic fibers are temporarily interrupted. The autonomous blockade is regional, but intense enough to lead to severe hemodynamic changes, such as hypotension. The sympathetic blockade is not the only cause of hypotension; aortocaval compression by the fetus 2 and infusion of oxytocin 3 also contribute.

The diagnosis of hemodynamic compromise during cesarean section under spinal anesthesia is usually non-invasive, such as heart rate and non-invasive blood pressure monitors, used as substitute markers of maternal cardiac output 4. However, the delay and the lack of accuracy of these parameters in reflecting the fall in uterine-placental blood flow are significant 5. Cardiac filling pressure catheters, besides being very invasive, also may be unreliable. Cardiac output (CO) is considered one of the most accurate parameters to detect these changes 6 and has better correlation with uterine-placental blood flow 7. With the advent of minimally invasive equipment to measure CO, the opportunity to investigate this parameter in the obstetric population has emerged. However, most of these equipments require external calibration resulting in a more cumbersome operation and greater invasiveness. Therefore, the objective of the present study was to observe the

Received from Hospital das Clínicas da Faculdade de Medicina da USP – São Paulo, Brazil.

1. Medical Degree from FMUSP; Supervisor of Anestesia Obstétrica HC-FMUSP
2. Professor of FMUSP; Professor of the Disciplina de Anestesiologia of FMUSP
3. Anesthesiologist; Centro Obstétrico – HCFMUSP
4. Master’s and Medical Degree from Faculdade de Medicina da USP; Technical Director of Serviço de Pré-Natal da Clínica Obstétrica do HC FMUSP; responsible for the sector of Cardiopatia e Gravidez. Member of the sectors of Hipertensão e Trombose na Gravidez
5. Medical Degree from FMUSP; Professor of the Disciplina de Obstetrícia of FMUSP
6. Professor of FMUSP; Disciplina de Obstetrícia of FMUSP

Correspondence to:
Dr. Fernando Bliacheriene
Divisão de Anestesiologia dos Hospital das Clínicas - FMUSP
Av. Dr. Éneas de Carvalho Aguiar, 155, 8o andar, Bisco 3
Cerqueira Cesar
05403-000 – São Paulo, SP, Brazil
E-mail: fernandobl@uol.com.br
behavior of CO measured by a minimally invasive uncalibrated monitor (LiDCO rapid) in patients undergoing cesarean section under spinal anesthesia.

METHODS

After approval by the Ethics Committee of the institution, patients referred to the pre-delivery unit of the Obstetric Center were questioned whether they wanted to participate in the study. Detailed information on the protocol and procedures emphasizing the voluntariness of participation without any repercussions on treatment in case they did not wish to participate was provided. Four patients agreed to participate and they signed an informed consent. Exclusion criteria, besides refusal to give consent, were not established.

The patient was transferred to the operating room where venous cannulation was performed with an 18G catheter. This was followed by puncture of the radial artery with a 22G venous catheter for invasive blood pressure monitoring, which was connected to a minimally invasive uncalibrated cardiac output (CO) monitor (LiDCO rapid – Pulse CO system, LiDCO Ltda, Cambridge, GB). This equipment uses the algorithm of pulse power analysis with correction for anthropometric characteristics for individual arterial complacency, and external calibration was not performed. Thus, it converts changes in blood pressure over time on an estimate of the systolic volume and CO (nominal value), which can be used in the analysis of tendencies.

The first measures of CO, BP, and heart rate (HR) were recorded with the patient in partial left lateral decubitus over a 15 degree wedge under the right gluteal region, considered the baseline measurements. The patient was, then, anesthetized with the standardized spinal anesthesia for cesarean section of the institution consisting of 15 mg of 0.5% hyperbaric bupivacaine associated with 80 µg of 0.02% morphine through a 27G Whitacre needle. The patient was once more placed on a 15 degree wedge on the right gluteal region resulting in uterine dislocation to the left until after the surgical fields were placed, at which time the wedge was removed. Crystalloids were not administered before the spinal anesthesia, but immediately after it, resulting in co-hydration with 10 mL.kg⁻¹ of Ringer’s lactate. Blood pressure was constantly monitored and any fall was immediately corrected to guarantee fetal well-being with a bolus of 200 g of metaraminol IV, a predominantly alpha-agonist vasopressor, and the measurements were recorded at this moment as “araminol”. When incision of the skin was performed, hemodynamic parameters were recorded as “anesthesia”, and we expected to be recording the peak of the sympathetic blockade. As soon as the fetus was extracted, followed by delivery of the afterbirth, new measurements were recorded as “birth”. According to the protocol of the institution, 3 IU IV of oxytocin over at least 60 seconds were infused, followed by recording of the measurements as “oxytocin”. The infusion was repeated according to the evaluation of the uterine tonus by the obstetrician, up to a limit of 9 IU. No patient required more oxytocin or other classes of uterotonics, such as ergot derivatives or prostaglandins. The “final” measurement was recorded when closing of the aponeurosis. The arterial catheter was removed and pressure was applied to the puncture site for five minutes, and the patient was followed-up for eight hours for detection of any vascular complications. Data was stored and tabulated on the memory card of the LiDCO rapid monitor and treated by its specific software, the LiDCO view.

CASE 1

This is a 39-year old, 86 kg, 165 cm, gesta 6 (2 cesarean sections and 3 abortions) with a diagnosis of a 34-week twin pregnancy, and acute fetal distress, which were the indications for cesarean section. Her physical status was classified as ASA II, since she had gestational diabetes on insulin, and hypertension controlled with alpha-methyldopa (1.5 g.day⁻¹). The case developed according to that described in “methods”, and the measurements are shown in Table I.

<table>
<thead>
<tr>
<th></th>
<th>CO</th>
<th>MAP</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>7.8</td>
<td>128</td>
<td>65</td>
</tr>
<tr>
<td>Anesthesia</td>
<td>7.6</td>
<td>122</td>
<td>64</td>
</tr>
<tr>
<td>Araminol</td>
<td>5.9</td>
<td>126</td>
<td>59</td>
</tr>
<tr>
<td>Birth</td>
<td>10.0</td>
<td>120</td>
<td>71</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>11.2</td>
<td>92</td>
<td>94</td>
</tr>
<tr>
<td>Araminol</td>
<td>9.6</td>
<td>109</td>
<td>83</td>
</tr>
<tr>
<td>Final</td>
<td>7.4</td>
<td>125</td>
<td>56</td>
</tr>
</tbody>
</table>

CO: Cardiac Output in L.min⁻¹; MAP: Mean Arterial Pressure in mmHg; HR: Heart Rate in beats.min⁻¹.

CASE 2

This is a 27-year old female, 89 kg, 162 cm, gesta 1, with diagnosis of a single fetus pregnancy on pelvic presentation, in labor, with indication of cesarean section. She was classified as physical status (ASA) II, since she had gestational...
diabetes controlled with diet. The case developed according to that described in “methods”, and her measurements are shown in Table II.

Table II – Case 2 Measurements

<table>
<thead>
<tr>
<th></th>
<th>CO</th>
<th>MAP</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>6.5</td>
<td>97</td>
<td>67</td>
</tr>
<tr>
<td>Anesthesia</td>
<td>10.8</td>
<td>106</td>
<td>91</td>
</tr>
<tr>
<td>Araminol</td>
<td>16.9</td>
<td>79</td>
<td>111</td>
</tr>
<tr>
<td>Araminol</td>
<td>15.0</td>
<td>76</td>
<td>107</td>
</tr>
<tr>
<td>Araminol</td>
<td>8.5</td>
<td>78</td>
<td>97</td>
</tr>
<tr>
<td>Araminol</td>
<td>10.8</td>
<td>70</td>
<td>94</td>
</tr>
<tr>
<td>Araminol</td>
<td>9.5</td>
<td>77</td>
<td>88</td>
</tr>
<tr>
<td>Birth</td>
<td>9.2</td>
<td>100</td>
<td>87</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>9.3</td>
<td>95</td>
<td>81</td>
</tr>
<tr>
<td>Final</td>
<td>6.5</td>
<td>90</td>
<td>82</td>
</tr>
</tbody>
</table>

CO: Cardiac Output in L.min⁻¹; MAP: Mean Arterial Pressure in mmHg; HR: Heart Rate in beats.min⁻¹.

Figure 2 – CO in L.min⁻¹ in Case 2.

CASE 3

This is a 31-year old female, 106 kg, 179 cm, gesta 2, with a history of cesarean section, classified as ASA II, with a diagnosis of gestational diabetes controlled with diet, controlled systemic lupus erythematosus, fetal macrosomia, and iterativeness, and cesarean section was indicated. Measurements obtained after the onset of the surgery are shown in Table III.

Table III – Case 3 Measurements

<table>
<thead>
<tr>
<th></th>
<th>CO</th>
<th>MAP</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>8.4</td>
<td>114</td>
<td>73</td>
</tr>
<tr>
<td>Anesthesia</td>
<td>8.8</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>Araminol</td>
<td>7.4</td>
<td>92</td>
<td>61</td>
</tr>
<tr>
<td>Araminol</td>
<td>7.9</td>
<td>105</td>
<td>71</td>
</tr>
<tr>
<td>Birth</td>
<td>8.4</td>
<td>87</td>
<td>73</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>8.7</td>
<td>70</td>
<td>79</td>
</tr>
<tr>
<td>Araminol</td>
<td>5.4</td>
<td>102</td>
<td>73</td>
</tr>
<tr>
<td>Final</td>
<td>7.4</td>
<td>104</td>
<td>70</td>
</tr>
</tbody>
</table>

CO: Cardiac Output in L.min⁻¹; MAP: Mean Arterial Pressure in mmHg; HR: Heart Rate in beats.min⁻¹.

Figure 3 – CO in L.min⁻¹ in Case 3.

CASE 4

This is a 32-year old female, 63 kg, 149 cm, physical status ASA I, gesta 2, with a history of cesarean section, with a diagnosis of twin pregnancy in which one fetus was on pelvic presentation, with indication for cesarean section. Measurements are shown in Table IV.

Table IV – Case 4 Measurements

<table>
<thead>
<tr>
<th></th>
<th>HR</th>
<th>MAP</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>6.7</td>
<td>101</td>
<td>75</td>
</tr>
<tr>
<td>Anesthesia</td>
<td>6.4</td>
<td>103</td>
<td>88</td>
</tr>
<tr>
<td>Araminol</td>
<td>7.0</td>
<td>95</td>
<td>94</td>
</tr>
<tr>
<td>Araminol</td>
<td>5.3</td>
<td>93</td>
<td>70</td>
</tr>
<tr>
<td>Araminol</td>
<td>5.5</td>
<td>92</td>
<td>71</td>
</tr>
<tr>
<td>Araminol</td>
<td>4.1</td>
<td>91</td>
<td>65</td>
</tr>
<tr>
<td>Araminol</td>
<td>6.4</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>Birth</td>
<td>6.4</td>
<td>84</td>
<td>86</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>7.8</td>
<td>79</td>
<td>100</td>
</tr>
<tr>
<td>Araminol</td>
<td>3.1</td>
<td>97</td>
<td>43</td>
</tr>
<tr>
<td>Final</td>
<td>5.7</td>
<td>93</td>
<td>64</td>
</tr>
</tbody>
</table>

CO: Cardiac Output in L.min⁻¹; MAP: Mean Arterial Pressure in mmHg; HR: Heart Rate in beats.min⁻¹.

Figure 4 – CO in L.min⁻¹ in Case 4.

612 Revista Brasileira de Anestesiologia
Vol. 61, N° 5, September-October, 2011
DISCUSSION

In general, the behavior of hemodynamic variables observed during interventions in patients undergoing cesarean sections under spinal anesthesia was:

1. After installation of the blockade, a fall in MAP with occasional elevation of HR and CO is observed;
2. When using the vasopressor metaraminol, a predominantly alpha-agonist drug, an increase in MAP with fall in HR and CO is observed;
3. When the fetus is extracted, the behavior is not uniform, with occasional elevation of CO and fall in MAP;
4. After infusion of oxytocin, marked changes are observed, such as fall in MAP besides an increase in HR and CO.

In case 1, after the blockade, measurements are close to baseline possibly because the sympathetic blockade did not achieve its peak or the effectiveness of conservative measures like dislocation of the uterus to the left and co-hydration. Unlike cases 2 and 4, who presented initially a compensatory increase of CO secondary to an increase in HR without compromising the BP, but which later manifested with a significant fall in BP. Since the beginning, case 3 showed significant hemodynamic changes with fall in MAP and increase in HR and CO. In response to the fall in MAP, boluses of the alpha-agonist vasopressor metaraminol were used, resulting in a typical response, with an increase in MAP and fall in HR and CO, most likely due to an increase in afterload, except in case 2 in which only after fetal extraction a recovery in MAP was observed. Regarding delivery, in all cases, only after fetal extraction a similar response was observed with an increase in CO secondary to vasodilator (spinal anesthesia and oxytocin) and vasoconstrictor (metaraminol) actions of interventions performed during cesarean sections that affect arterial tonus and not due to bleeding. Regarding the absence of SVR measurements as a limiting factor of this study, we decide not to use it, since it is an invasive measurement because it requires a right atrium catheter to measure pressure, which is required to its calculation.

Therefore, physiologic situations are observed, such as aortocaval decompression after birth and self-transfusion of uterine blood, that impose a great overload on the cardiovascular system with an increase of venous return, which is accommodated through the cardiac valves and pulmonary blood vessels. However, this may be a problem in patients with low cardiovascular reserve or with cardiopathies, such as mitral and aortic stenosis, besides pulmonary hypertension, resulting in pulmonary edema or cardiac failure. The same can be seen in situations that are induced like spinal anesthesia and oxytocin infusion in which normal patients respond with an increase in CO and fall in SVR and venous return, but in cardiopathies, these responses should be controlled or even avoided.

This cardiac output monitor produced data compatible with those of prior publications, and in this scenery, external calibration with data obtained by thermodilution or lithium dilution was dispensable, especially when analysis is made based on tendencies and nominal values and not absolute values. Measurements produced can orient regarding a possible cause of hemodynamic changes and indicate the most appropriate treatment for the case, besides signaling reckless conducts, such as rapid infusion of oxytocin. They can also be useful in patients with limited cardiovascular reserve, since they cannot tolerate significant changes in SVR and they cannot compensate for changes in CO.

To conclude, it is a fact that HR, BP, and the communication with the awake patient assessing her well-being are important parameters and the most commonly used in obstetric anesthesia. However, the minimally invasive uncalibrated CO monitors can have an important role in hemodynamic management of gravidas, especially high-risk gravidas with associated comorbidities or as a research tool.
Utilização de Monitor Minimamente Invasivo Não Calibrado de Débito Cardíaco em Pacientes Submetidas à Cesariana sob Raquianestesia: Relato de Quatro Casos

Fernando Bliacheriene, TSA 1, Maria José Carvalho Carmona, TSA 2, Cristina de Freitas Madeira Barretti 3, Cristiane Maria Federicci Haddad 3, Elaine Soubhi Mouchalwat 3, Maria Rita de Figueiredo Lemos Bortolotto 4, Rossana Pulcineli Vieira Francisco 5, Marcelo Zugaib 6

Justificativa e objetivos: Durante cesariana sob raquianestesia observam-se alterações hemodinâmicas. São realizadas medidas de pressão arterial (PA) não invasiva e de frequência cardíaca (FC) para diagnosticar essas alterações, mas com atraso e imprecisão. Outros monitores como cateteres de pressão de enchimento e débito cardíaco (DC) com calibração externa são muito invasivos ou imprecisos. O objetivo deste estudo foi relatar as medidas de débito cardíaco obtidas por um monitor minimamente invasivo não calibrado (LiDCO rapid) em pacientes submetidas à cesariana sob raquianestesia.

Relato do caso: Após aprovação da comissão de ética, quatro pacientes consentiram em participar do estudo. Elas foram submetidas à cesariana sob raquianestesia quando estavam conectadas ao LiDCO rapid por uma linha arterial radial. Os dados de DC, FC e BP foram registrados no momento basal, após instalação da raquianestesia, após extração fetal e placentária e após infusão de ocitocina e metaraminol. Foram observadas queda da PA, com aumento da FC e DC após a raquianestesia e infusão de ocitocina; e aumento da BP, com queda da FC e DC após bolus de vasopressor.

Conclusões: Embora não calibrado, esse monitor produziu tendência de dados consistentes sobre a hemodinâmica de pacientes obstétricas e pode ser usado como guia terapêutico ou como ferramenta de pesquisa.

Unitermos: ANESTESIA: Regional, raquianestesia; CIRURGIA: Cesárea; COMPLICAÇÕES: Hipotensão; CUIDADOS: Intraoperatórios; TÉCNICAS DE MEDIÇÃO: Hemodinâmica, débito cardíaco.

©2011 Elsevier Editora Ltda. Este é um artigo Open Access sob a licença de CC BY-NC-ND

INTRODUÇÃO

A raquianestesia vem se consolidando como a técnica de escolha para cesariana em todo o mundo 1, em virtude da qualidade do bloqueio oferecido e da segurança da técnica ao se utilizar de massa anestésica pequena e não demandar assistência ventilatória nem intubação traqueal.

No entanto, o bloqueio produzido não é seletivo: a sinapse é interrompida temporariamente nas fibras sensitivas, motores e autonômicas. O bloqueio autonômico é regional, mas intenso o suficiente para provocar alterações hemodinâmicas intensas manifestadas, por exemplo, pela hipotensão arterial. A hipotensão não advém apenas do bloqueio simpático. Também contribuem a compressão aorto-cava pelo concepto.

O diagnóstico do comprometimento hemodinâmico durante cesariana sob raquianestesia geralmente é feito de forma não invasiva, recorrendo-se a frequencímetro e monitor de pressão arterial não invasiva, como marcadores substitutos do débito cardíaco materno 4. No entanto, são significativos o atraso e a imprecisão com que esses parâmetros manifestam a queda do fluxo sanguíneo útero-placentário. Cateteres de pressão de enchimento cardíaco também podem ser imprecisos, além de muito invasivos. O débito cardíaco (DC) é tido como um parâmetro mais preciso para detectar essas alterações e que melhor se correlaciona com o fluxo sanguíneo útero-placentário. Com o advento de equipamentos que medem...
o DC de forma pouco invasiva surge uma oportunidade de se estudar esse parâmetro na população obstétrica. No entanto, a maioria exige calibração externa, o que implica operação mais trabalhosa e maior invasibilidade. Portanto, o objetivo deste estudo foi observar o comportamento do DC aferido por monitor minimamente invasivo, não calibrado (LiDCO rapid), em pacientes submetidas à cesariana sob raquianestesia.

MÉTODO

Após aprovação pelo comitê de ética da instituição, pacientes encaminhadas à unidade de pré-parto do Centro Obstétrico foram questionadas sobre sua participação no estudo. Foram fornecidas informações detalhadas sobre o protocolo e os procedimentos nele inclusos, salientando o caráter exclusivamente voluntário da participação, sem qualquer prejuízo ao tratamento em caso de negativa. Quatro pacientes manifestaram consentimento voluntário para inclusão no estudo, registrado em documento com assinatura aposta. Nenhum critério de exclusão foi estabelecido além da negativa do consentimento.

A paciente, então, era transferida à sala operatória, iniciando-se venoclise com cateter venoso calibre 18G. Em seguida, obteve-se por punção da artéria radial com cateter venoso calibre 22G a monitoração invasiva da pressão arterial (PA), com posterior conexão ao monitor de débito cardíaco (DC) minimamente invasivo, não calibrado (LiDCO rapid – Pulse CO system, LiDCO Ltda, Cambridge, GB). Esse equipamento utiliza o algoritmo da análise de força do pulso (pulse power analysis) com correção pelas características antropométricas para a complacência arterial individual, não sendo realizada calibração externa. Assim, converte as alterações da pressão arterial no tempo em uma estimativa do volume sistólico e DC (valor nominal), que pode ser usado para a análise de tendências.

As primeiras medidas de DC, PA e frequência cardíaca (FC) foram registradas a seguir, com a paciente colocada sobre uma cunha de 15 graus na região glútea direita em decúbito lateral para esquerda (DLE) parcial, e passaram a ser consideradas a medida “basal”. Depois disso, a paciente recebia raquianestesia padronizada para cesariana na instituição, que consiste de 15 mg de bupivacaína hiperbárica a 0,5% associada a uma dose de 80 µg de morfina a 0,02% por agulha espinhal do tipo Whitacre, calibre 27G. A paciente, então, era novamente colocada sobre uma cunha de 15 graus, na região glútea direita, resultando em deslocamento uterino para a esquerda (DUE) até a finalização da colocação dos campos cirúrgicos estéreis, quando era retirado. Em relação à infusão de fluidos, não se administrou nenhuma dose de cristalóide antes da punção raquidiana, mas sim imediatamente depois, resultando em co-hidratação de 10 mL.kg⁻¹ de solução de Ringer com lactato.

A PA era constantemente monitorada e qualquer queda era prontamente corrigida para garantir o bem-estar fetal com um bolus de 200 µg IV de metaraminol, vasopressor predominantemente alfa-agonista, e as medidas eram registradas nesse momento como “araminol”. Assim que era iniciada a incisão da pele, registavam-se as medidas hemodinâmicas como “anestesia”, esperando-se estar flagrando o momento do pico do bloqueio simpático. Assim que o feto era extraído, seguido da deixa que a parelha, novas medidas eram registradas como “nascimento”. Depois, conforme protocolo da instituição, a infusão de ocitocina era iniciada: 3 UI em no mínimo 60 segundos de infusão, seguido de registro de medidas como “ocitocina”. A infusão era repetida conforme avaliação do tônus uterino pelo obstetra até o limite de 9 UI. Nenhuma paciente necessitou de mais ocitocina ou outras classes de uterotônicos, como derivados do ergot ou prostaglandinas. A medida “final” era registrada com o fechamento da aponeurose. Em seguida, o cateter arterial era prontamente retirado, seguido de compressão do sítio de punção por cinco minutos e acompanhamento da paciente por oito horas, para a detecção de qualquer complicaçao vascular. Os dados foram armazenados e tabulados no cartão de memória do monitor LiDCO rapid e tratados por seu programa específico LiDCO view.

CASO 1

Paciente de 39 anos, 86 kg de peso, 165 cm de altura, gestante (2 cesarianas e 3 abortamentos prévios), com diagnóstico de gestação gemelar de 34 semanas e sofrimento fetal agudo, com indicação de cesariana. Foi classificada como estado físico (ASA) II, por portar diabetes gestacional em uso de insulina e síndrome hipertensiva, controlada com alfa-metildopa. Iniciou-se o caso conforme descrito em “método” e produziram-se as medidas mostradas na Tabela I.

<p>| Tabela I – Medidas do Caso 1 |</p>
<table>
<thead>
<tr>
<th>DC</th>
<th>PAM</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal</td>
<td>7,8</td>
<td>128</td>
</tr>
<tr>
<td>Anestesia</td>
<td>7,6</td>
<td>122</td>
</tr>
<tr>
<td>Aminol</td>
<td>5,9</td>
<td>126</td>
</tr>
<tr>
<td>Nascimento</td>
<td>10,0</td>
<td>120</td>
</tr>
<tr>
<td>Ocitocina</td>
<td>11,2</td>
<td>92</td>
</tr>
<tr>
<td>Aminol</td>
<td>9,6</td>
<td>109</td>
</tr>
<tr>
<td>Final</td>
<td>7,4</td>
<td>125</td>
</tr>
</tbody>
</table>

DC: Débito Cardíaco em L.min⁻¹; PAM: Pressão Arterial Média em mmHg; FC: Frequência Cardíaca em batimentos.min⁻¹.

Figura 1 – DC em L.min⁻¹ do Caso 1.
CASO 2

Paciente de 27 anos, 89 kg de peso, 162 cm de altura, primigesta, com diagnóstico de gestação única com apresentação pélvica, em trabalho de parto, sendo indicada cesariana. Classificada como estado físico (ASA) II por portar diabetes gestacional controlada com dieta. Iniciado o caso conforme descrito em “método” resultou nas medidas mostradas na Tabela II.

Tabela II – Medidas do Caso 2

<table>
<thead>
<tr>
<th></th>
<th>DC</th>
<th>PAM</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal</td>
<td>6,5</td>
<td>97</td>
<td>67</td>
</tr>
<tr>
<td>Anestesia</td>
<td>10,8</td>
<td>106</td>
<td>91</td>
</tr>
<tr>
<td>Araminol</td>
<td>16,9</td>
<td>79</td>
<td>111</td>
</tr>
<tr>
<td>Araminol</td>
<td>15,0</td>
<td>76</td>
<td>107</td>
</tr>
<tr>
<td>Araminol</td>
<td>8,5</td>
<td>78</td>
<td>97</td>
</tr>
<tr>
<td>Araminol</td>
<td>10,8</td>
<td>70</td>
<td>94</td>
</tr>
<tr>
<td>Araminol</td>
<td>9,5</td>
<td>77</td>
<td>88</td>
</tr>
<tr>
<td>Nascimento</td>
<td>9,2</td>
<td>100</td>
<td>87</td>
</tr>
<tr>
<td>Ocitocina</td>
<td>9,3</td>
<td>95</td>
<td>81</td>
</tr>
<tr>
<td>Final</td>
<td>6,5</td>
<td>90</td>
<td>82</td>
</tr>
</tbody>
</table>

DC: Débito Cardíaco em L.min⁻¹; PAM: Pressão Arterial Média em mmHg; FC: Frequência Cardíaca em batimentos.min⁻¹.

CASO 3

Paciente de 31 anos, 106 kg de peso, 179 cm de altura, secundigesta com um parto cesariana anterior, classificada como estado físico (ASA) II, com diagnóstico de diabetes gestacional controlada com dieta, lúpus eritematoso sistêmico controlado, macrossomia fetal e iteratividade, sendo indicado parto operatório. As medidas obtidas após o início do caso são mostradas na Tabela III.

Tabela III – Medidas do Caso 3

<table>
<thead>
<tr>
<th></th>
<th>DC</th>
<th>PAM</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal</td>
<td>8,4</td>
<td>114</td>
<td>73</td>
</tr>
<tr>
<td>Anestesia</td>
<td>8,8</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>Araminol</td>
<td>7,4</td>
<td>92</td>
<td>61</td>
</tr>
<tr>
<td>Araminol</td>
<td>7,9</td>
<td>105</td>
<td>71</td>
</tr>
<tr>
<td>Nascimento</td>
<td>8,4</td>
<td>87</td>
<td>73</td>
</tr>
<tr>
<td>Ocitocina</td>
<td>8,7</td>
<td>70</td>
<td>79</td>
</tr>
<tr>
<td>Araminol</td>
<td>5,4</td>
<td>102</td>
<td>73</td>
</tr>
<tr>
<td>Final</td>
<td>7,4</td>
<td>104</td>
<td>70</td>
</tr>
</tbody>
</table>

DC: Débito Cardíaco em L.min⁻¹; PAM: Pressão Arterial Média em mmHg; FC: Frequência Cardíaca em batimentos.min⁻¹.

CASO 4

Paciente de 32 anos, 63 kg de peso, 149 cm de altura, estado físico (ASA) I, secundigesta com um parto cesariana anterior, com diagnóstico de gestação gemelar, sendo um feto em apresentação pélvica, com indicação de parto operatório. As medidas resultantes são mostradas a seguir na Tabela IV.

Tabela IV – Medidas do Caso 4

<table>
<thead>
<tr>
<th></th>
<th>DC</th>
<th>PAM</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal</td>
<td>6,7</td>
<td>101</td>
<td>75</td>
</tr>
<tr>
<td>Anestesia</td>
<td>6,4</td>
<td>103</td>
<td>88</td>
</tr>
<tr>
<td>Araminol</td>
<td>7,0</td>
<td>95</td>
<td>94</td>
</tr>
<tr>
<td>Araminol</td>
<td>5,3</td>
<td>93</td>
<td>70</td>
</tr>
<tr>
<td>Araminol</td>
<td>5,5</td>
<td>92</td>
<td>71</td>
</tr>
<tr>
<td>Araminol</td>
<td>4,1</td>
<td>91</td>
<td>65</td>
</tr>
<tr>
<td>Araminol</td>
<td>6,4</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>Nascimento</td>
<td>6,4</td>
<td>84</td>
<td>86</td>
</tr>
<tr>
<td>Ocitocina</td>
<td>7,8</td>
<td>79</td>
<td>100</td>
</tr>
<tr>
<td>Araminol</td>
<td>3,1</td>
<td>97</td>
<td>43</td>
</tr>
<tr>
<td>Final</td>
<td>5,7</td>
<td>93</td>
<td>64</td>
</tr>
</tbody>
</table>

DC: Débito Cardíaco em L.min⁻¹; PAM: Pressão Arterial Média em mmHg; FC: Frequência Cardíaca em batimentos.min⁻¹.
UTILIZAÇÃO DE MONITOR MINIMAMENTE INVASIVO NÃO CALIBRADO DE DÉBITO CARDIÁCO EM PACIENTES SUBMETIDAS À CESARIANA SOB RAQUIANESTESIA: RELATO DE QUATRO CASOS

Figura 4 – DC em L.min⁻¹ do Caso 4.

DISCUSSÃO

Em geral, o comportamento das variáveis hemodinâmicas, observado durante as intervenções realizadas nessas pacientes submetidas à cesariana sob raquianestesia, foi:

1. Após a instalação do bloqueio, observa-se queda da PAM com elevação da FC e DC;
2. Ao se utilizar o vasopressor metaraminol, predominantemente alfa-agonista, segue-se aumento da PAM com queda da FC e DC;
3. Ao nascimento, o comportamento não é uniforme, com eventual elevação do DC e queda da PAM;
4. Após infusão de ocitocina, há alterações marcantes, como queda de PAM, além de aumento de FC e DC.

No caso um, após a instalação da anestesia, as medidas são próximas das basais, possivelmente em virtude do blo-queio simpático não ter atingido seu pico ou ao fato de as medidas conservadoras, como DUE e co-hidratação, terem sido efetivas o suficiente. Diferente dos casos dois e quatro, que apresentam inicialmente aumento compensatório do DC à custa do aumento da FC sem comprometer a PA, mas que depois se manifestam com queda exuberante do mesmo. O caso três, desde o princípio, apresenta alterações hemodinâmicas significativas, com queda da PAM e aumento do DC e volúmenes venosos. Na recuperação pela ocitocina, os parâmetros retornam aos níveis basais. O comportamento da PAM, provavelmente em função de alterações de resistência vascular sistêmica (RVS), demonstra que suas variações advêm das ações vasodilatadora (raquianestesia e ocitocina) e vasoconstriitora (metaraminol) das intervenções realizadas durante uma cesariana, no tónum arterial, e de um grande aumento da resistência vascular pulmonar, eventualmente resultando em edema pulmonar ou insuficiência cardíaca. O mesmo ocorre nas situações induzidas, como a raquianestesia e a infusão de ocitocina, em que pacientes normais respondem com aumento do DC à queda da RVS e retorno venoso, mas em cardiopatas essas respostas devem ser controladas ou até mesmo evitadas.

Esse monitor de débito cardíaco produziu dados compatíveis com os de publicações previamente prescindíveis, sendo prescindível, nesse cenário, a calibração externa com dados obtidos por termodiluição ou diluição do lítio, principalmente quando a análise se faz a partir de tendências e valores nominais, e não de valores absolutos. As medidas produzidas podem orientar quanto a uma possível causa de alteração hemodinâmica e indicar terapia mais apropriada para o caso, além de sinalizar algumas condutas temerárias, como infusão rápida de ocitocina. Também podem ser úteis em pacientes com reserva cardiovascular limitada, pois neles alterações significativas de RVS não são toleradas nem podem ser compensadas pelo DC.

Concluindo, é fato que a FC, a PA e a comunicação com a paciente acordada, avaliando seu bem-estar, são parâmetros importantes e os mais frequentemente utilizados em anestesia obstétrica. Porém, monitores de DC minimamente invasivos não calibrados podem desempenhar papel relevante no monitorio hemodinâmico de gestantes, especialmente as de alto risco, com morbidades associadas ou como ferramenta de pesquisa.

REFERÊNCIAS / REFERENCES

Justificativa y objetivos: Durante la cesárea bajo raquianestesia, se observaron alteraciones hemodinámicas. Las medidas de presión arterial (PA), no invasiva y de frecuencia cardíaca (FC), para diagnosticar esas alteraciones se realizan, pero con atraso e imprecisión. El objetivo de este estudio, fue relatar las medidas de débito cardíaco obtenidas por un monitor mínimamente invasivo no calibrado (LiDCO rapid), en pacientes sometidas a la cesárea bajo raquianestesia.

Relato del caso: Después de la aprobación por parte de la comisión de ética, cuatro pacientes estuvieron de acuerdo en participar en el estudio. Se sometieron entonces a la cesárea bajo raquianestesia cuando estaban conectadas al LiDCO rapid por una línea arterial rápida. Los datos de DC, FC y BP se registraron al momento basal, después de la instalación de la raquianestesia, después de la extracción fetal y placentaria, y después de la infusión de ocitocina y metaraminol. Observamos una caída de la PA, con un aumento de la FC y BP posterior a la raquianestesia e infusión de ocitocina; y un aumento de la BP, con una caída de la FC y DC después de un bolo de vasopresor.

Conclusiones: Aunque no esté calibrado, ese monitor nos ofreció datos consistentes sobre la hemodinámica de las pacientes obstétricas y puede ser usado como guía terapéutica o como una herramienta de investigación.

Descriptores: ANESTESIA: Regional, raquianestesia; CIRUGÍA: Cesárea; COMPLICACIONES: Hipotensión; CUIDADOS: Intraoperatorios; TÉCNICAS DE MEDICIÓN: Hemodinámica, Débito cardíaco.