Dear Editor,

Sugammadex is a modified gamma cyclodextrin. Cyclodextrins are water soluble cyclic oligosaccharides with a lipophilic core. Sugammadex has quickly found a place in clinical use for selective antagonism of neuromuscular blockade with rocuronium. Sugammadex quickly encapsulates steroidal neuromuscular blockers, increasing the amount of encapsulated drug and the presence or absence of precipitation was evaluated. There is no clinical data on whether sugammadex forms precipitation with other drugs, commonly used in clinical practice.

Apart from its use with steroidal neuromuscular blockers, it is known that sugammadex interacts with over 40 lipophilic, steroid and non-steroidal drugs. These drugs include: propofol, thiopental, fentanyl, remifentanil, vancomycin, gentamicin, salbutamol, aminophylline, atropine, digoxin, ephedrine, phenolamine, verapamil, cortisone and hydrocortisone.

Previous research shows that, apart from steroidal muscle relaxants, sugammadex forms precipitates with protamine.

There is no clinical data on whether sugammadex forms precipitates with other drugs, commonly used in clinical practice. The hypothesis of this study is to investigate whether the chemical and physical properties of sugammadex would contribute to a precipitation reaction with drugs commonly used in clinical practice.

With this aim, simply 0.1 mL containing 100 mg.mL\(^{-1}\) sugammadex was mixed on a glass slide with the same volume of a drug and the presence or absence of precipitation was determined under the microscope. The drugs investigated are all commonly used in clinical anesthesia practice. They include: adrenalin (1 mg.mL\(^{-1}\)), atropine (1 mg.mL\(^{-1}\)), amiodarone (50 mg.mL\(^{-1}\)), aminophylline (24 mg.mL\(^{-1}\)), ornidazole (500 mg.3 mL\(^{-1}\)), bupivacaine (5 mg.mL\(^{-1}\)), cefazolin sodium (250 mg.mL\(^{-1}\)), dexamethamidone (100 µg.mL\(^{-1}\)), dobutamine (12.5 mg.mL\(^{-1}\)), dopamine (8 mg.mL\(^{-1}\)), ephedrine (0.05 g.mL\(^{-1}\)), esmolol (10 mg.mL\(^{-1}\)), esomeprazole (40 mg.mL\(^{-1}\)), etomidate (2 mg.mL\(^{-1}\)), fentanyl (50 µg.mL\(^{-1}\)), furosemide (10 mg.mL\(^{-1}\)), gentamicin (40 mg.mL\(^{-1}\)), glyceryl trinitrate (5 mg.mL\(^{-1}\)), heparin (1,000 IU.mL\(^{-1}\)), hydrocortisone (250 mg.mL\(^{-1}\)), crystallized insulin (100 IU.mL\(^{-1}\)), Calcium (Calcium Gluconate Monohydrate 225 mg.mL\(^{-1}\) + Calcium levulinate dihitrate 572 mg.mL\(^{-1}\)), ketamine (50 mg.mL\(^{-1}\)), levobupivacaine (7.5 mg.mL\(^{-1}\)), magnesium sulphate (1.2 mEq.mL\(^{-1}\)), metformin (0.5 g.mL\(^{-1}\)), midazolam (5 mg.mL\(^{-1}\)), n-acetylcyesteine (100 mg.mL\(^{-1}\)), naloxone (0.4 mg.mL\(^{-1}\)), neostigmine (0.5 mg.mL\(^{-1}\)), nitroprusside (12 mg.mL\(^{-1}\)), noradrenaline (1 mg.mL\(^{-1}\)), oxytocin (5 IU.mL\(^{-1}\)), paracetamol (10 mg.mL\(^{-1}\)), thiopental sodium (25 mg.mL\(^{-1}\)), pethidine (50 mg.mL\(^{-1}\)), phenytoin (22.75 mg.mL\(^{-1}\)), phenytoin (50 mg.mL\(^{-1}\)), piracetam (1 g.5 mL\(^{-1}\)), prednisolone (25 mg), priloacine (20 mg.mL\(^{-1}\)), propafenone (3.5 mg.mL\(^{-1}\)), protamine hydrochloride (1,000 IU.mL\(^{-1}\)), potassium (1 mEq.mL\(^{-1}\)), remifentanil (5 mg.mL\(^{-1}\)), subbactam-ampicillin (200 mg.mL\(^{-1}\)), succinylcholine (20 mg.mL\(^{-1}\)), tenoxicam (10 mg.mL\(^{-1}\)), theophylline (24 mg.mL\(^{-1}\)), trimadol (50 mg.mL\(^{-1}\)), and vitamin K (10 mg.mL\(^{-1}\)).

A scale of 0-4 was used to evaluate the test, with 0 being no precipitation and 4+ being strong precipitation.

Within seconds, sugammadex (100 mg.mL\(^{-1}\)) scored 4+ precipitation with amidarone (50 mg.mL\(^{-1}\)), dobutamine (12.5 mg.mL\(^{-1}\)) and protamine hydrochloride (1,000 IU.mL\(^{-1}\)). There are reports on the incompatibility and precipitation of anesthetic drugs with thiopental, with basic pH, reacts with acidic muscle relaxants such as suxamethonium, mivacurium, vecuronium and rocuronium, causing precipitation. Similarly, thiopental causes precipitation with local anesthetics due to pH differences. There have been previous studies to show that thiopental reacting with various drugs may form thiopental acid crystals due to precipitation, which may cause pulmonary embolism.
Our study shows that sugammadex reacts with amiodarone, dobutamine and protamine under in-vitro conditions, causing precipitation. We emphasize that sugammadex should not be given intravenously simultaneously with these drugs. Future studies will characterize their precipitation reaction, which seems to be only the tip of the iceberg. In addition, future studies should be focused on investigating sugammadex compatibility with other drugs by using Gas Chromatography/Mass Spectrometry device. We believe the effects of this precipitation on the drugs’ efficacy and circulation warrants further research.

*Volkan Hancı, MD, Assoc. Prof.
**Hasan Ali Kiraz, MD, Assist. Prof.
**Dilek Ömür, MD, Assist. Prof.
**Serpil Ekin, MD, Assistant Doctor
**Berna Uyan, MD, Assistant Doctor
***Bulent Serhan Yurtlu, MD, Assist. Prof.

Departments of Anaesthesiology and Reanimation,
* Dokuz Eylül University (formerly Canakkale Onsekiz Mart University)
** Canakkale Onsekiz Mart University
*** Dokuz Eylül University (formerly Bulent Ecevit University), Turkey

References