Different types of glomerulopathies, generally membranous glomerulonephritis, have been associated with solid tumors. However, paraneoplastic IgA-N has been reported rarely. Primarily, IgA-N associations with cancer of the buccal cavity, the nasopharynx and the respiratory tract have been described. Mesangial IgA deposits have been found at autopsy in patients who died of a gastrointestinal neoplasm without prior clinical evidence of nephropathy. Despite intensive investigation, the mechanism underlying glomerular IgA deposition in IgA nephropathy has not been clarified. There are two isotype subclasses of IgA: IgA1 and IgA2. Gastrointestinal and respiratory tracts plasma cells produce both IgA1 and IgA2; however plasma cells in the spleen, lymph nodes and bone marrow produce predominantly IgA1. Invasion of the intestinal mucosa by malignancy increases the circulating IgA level and therefore leads to the formation of mesangial deposits.

In conclusion, paraneoplastic IgA nephropathy with nephrotic syndrome could be a clinical problem in patients with malignancies, besides the treatment chart has not been well-documented yet. To the best of our knowledge, we report the first case of paraneoplastic IgA-N associated with recurrence of gastric adenocarcinoma. IgA-N should take into account in patients with malignancy and nephrotic syndrome even if primary disease was on remission and it could be a harbinger for the relapse of disease.

Conflicts of interest
The authors declare that they have no conflicts of interest related to the contents of this article.


Ismail Kocyigit1, Sumeyra Dortbudak1, Eray Eroğlu2, Aydin Unal1, Murat H. Sipahioglu1, Veli Berk2, Bulent Tokgoz1, Oktay Oymak1, Ismail Kocyigit1
1 Department of Nephrology, Erciyes University Medical School, Kayseri (Turkey).
2 Department of Internal Medicine. Erciyes University Medical School. Kayseri (Turkey).
3 Department of Oncology. Erciyes University Medical School. Kayseri (Turkey).

Correspondence: Ismail Kocyigit
Department of Nephrology, Erciyes University Medical School, Erciyes Universitesi Tip Fakültesi, Organ Nakli ve Diyaliz Hastanesi Talas Yolu Üzeri, Kayseri, Türkiye, 38039, Kayseri, Turkey. ikocyigit@gmail.com

The E23K polymorphism of the KCNJ11 gene is associated with lower insulin release in patients with Autosomal Dominant Polycystic Kidney Disease

Nefrologia 2013;33(6):855-8
doi:10.3265/Nefrologia.pre2013.May.12111

Dear Editor,

Results of large-scale studies and meta-analyses strongly indicate that K23 allele is associated with higher prevalence and incidence of type 2 diabetes in adult Caucasians. Some studies have shown that the K allele may have a diabetogenic effect by impairing glucose-induced insulin release.

The aim of our study was to investigate an association between E23K KCNJ11 gene polymorphism with anthropometric, biochemical, beta-cell secretion and insulin sensitivity parameters among adult ADPKD patients with normal kidney function and no diagnosis of diabetes. The comparison of genotype-phenotype associations between ADPKD and non-ADPKD subjects could reveal a hypothetical mechanism of genetic determination of diabetes specific for ADPKD patients.

METHODS
The study group included 49 adult individuals with diagnosed ADPKD (19 males, 30 females) while the control group comprised 50 gender- and age-matched healthy individuals (22 males, 28 females).

The oral glucose tolerance test (OGTT) was performed according to WHO guidelines (with 75 g of glucose). Venous blood was collected to measure fasting glucose, insulin, total cholesterol, LDL, HDL and triglyceride levels. Glucose concentration was measured by an enzymatic-amperometric method (Super GL; Dr Müller Gerätebau GmbH, Freital, Germany). Insulin concentration
was measured by microparticle enzyme immunoassay (AxSYM MEIA; Abbott Laboratories, Abbott Park, USA). For serum creatinine and lipid levels a Cobas Integra 800 bioanalyser was used.

The beta-cell function indexes were used in our study: ratios of insulin-to-glucose concentrations for each OGTT time point (INS/GLU 0, 30, 60, 90, 120), ratio of the area under curve of insulin time point (INS/GLU 0, 30, 60, 90, 120), and glucose (AUC Glu) concentrations (SECR AUC), secrerty 1st phase (SECR1P) and 2nd phase (SECR2P) calculated from the first 30 or 60 minutes of OGTT (SECR1P 30 min, SECR1P 60 min, SECR2P 30 min, SECR2P 60 min), insulogenic index (INSGENIN), and insulin sensitivity indexes: insulin sensitivity composite index (ISI COMP), and Cederholm sensitivity index (ISI CEDE). The formulas of these indexes were presented in our previous study.7

The genotypes of G67A (E23K) KCNJ11 polymorphism (rs5219) were determined using a by PCR-RFLP technique, as described previously.8

Mann-Whitney test was used for quantitative variables, while the Fisher exact test was implemented for qualitative variables.

RESULTS

Differences in E23K KCNJ11 genotype distribution among ADPKD patients (33% EE, 51% EK, 16% KK) and controls (46% EE, 42% EK, 12% KK) proved insignificant (p=.39). Both distributions were consistent with Hardy-Weinberg equilibrium (p>.7).

ADPKD group

KK homozygotes were significantly younger than allele E carriers. Other anthropometric parameters were not associated with genotype (Table 1).

There was a trend to lower serum total cholesterol concentration among KK homozygotes if compared to E allele carriers, but HDL-cholesterol was significantly lower among K allele carriers in comparison to EE homozygotes (Table 1). Glucose levels during OGTT did not differ significantly between the genotypes, but we have found trend to lower insulin levels among K allele carriers than in EE homozygotes in the 30th minute of OGTT (Table 2). Similarly, in the 60th minute of the test, there was a trend to lower insulin levels among KK homozygotes than in E allele carriers. INS/GLU 30 min ratio and values of the SECR1P 30 min, SECR2P 30 min and INSGENIN indexes were significantly lower among K allele carriers than in EE homozygotes. No significant associations between KCNJ11 E23K genotype and other carbohydrate metabolism parameters were observed (Table 2).

Table 1. Association between the G67A (rs5219 E23K) variant of the KCNJ11 gene and anthropometric and biochemical parameters among ADPKD and control groups

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ADPKD group (n=49)</th>
<th>Control group (n=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EE (n=16)</td>
<td>EK (n=25)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>38.6±7.97</td>
<td>36.6±12.4</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.6±5.25</td>
<td>25.1±4.98</td>
</tr>
<tr>
<td>WHR</td>
<td>0.84±0.10</td>
<td>0.84±0.09</td>
</tr>
<tr>
<td>Serum total cholesterol (mg/dL)</td>
<td>199±44</td>
<td>198±36</td>
</tr>
<tr>
<td>LDL-cholesterol (mg/dL)</td>
<td>125±40</td>
<td>131±36</td>
</tr>
<tr>
<td>HDL-cholesterol (mg/dL)</td>
<td>61.8±9.33</td>
<td>54.4±15.2</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>91.1±45.8</td>
<td>108±70</td>
</tr>
<tr>
<td>Glucose 0 min (mg/dL)</td>
<td>93.7±3.11</td>
<td>90.5±12.3</td>
</tr>
<tr>
<td>Glucose 30 min (mg/dL)</td>
<td>131±26</td>
<td>140±29</td>
</tr>
<tr>
<td>Glucose 60 min (mg/dL)</td>
<td>119±28</td>
<td>132±43</td>
</tr>
<tr>
<td>Glucose 90 min (mg/dL)</td>
<td>103±19</td>
<td>109±33</td>
</tr>
<tr>
<td>Glucose 120 min (mg/dL)</td>
<td>87.6±15.5</td>
<td>91.1±25.2</td>
</tr>
<tr>
<td>Insulin 0 min (µU/mL)</td>
<td>9.14±5.28</td>
<td>8.94±4.78</td>
</tr>
<tr>
<td>Insulin 30 min (µU/mL)</td>
<td>65.5±24.7</td>
<td>55.1±42.4</td>
</tr>
<tr>
<td>Insulin 60 min (µU/mL)</td>
<td>84.3±53.0</td>
<td>73.3±48.1</td>
</tr>
<tr>
<td>Insulin 90 min (µU/mL)</td>
<td>54.3±26.4</td>
<td>65.9±56.9</td>
</tr>
<tr>
<td>Insulin 120 min (µU/mL)</td>
<td>29.6±14.3</td>
<td>49.5±64.4</td>
</tr>
</tbody>
</table>

BMI: body mass index; HDL: high-density lipoprotein; LDL: low-density lipoprotein; WHR: waist-to-hip ratio.

a - EE vs. EK + KK; Mann-Whitney test.

b - EE + EK vs. KK; Mann-Whitney test.
Control group
Among KK homozygotes, in comparison to E allele carriers, significantly lower glucose levels in the 60th minute of OGTT as well as lower insulin levels in the 60th and 120th minute of OGTT were observed – a similar trend was observed for insulin in the 90th minute. Moreover, lower values of INS/GLU 60 min and INS/GLU 120 min ratios as well as area under curve (AUC) for insulin were observed among KK homozygous subjects. A trend to lower insulin were observed among KK homozygous subjects. A trend to lower insulin.

DISCUSSION
Our report is the first evaluation of the association between E23K polymorphism of the KCNJ11 gene and anthropometry, lipid and glucose metabolism parameters in a homogenous group of patients with ADPKD.

The results obtained in this study reveal an association between the KCNJ11 E23K variant and lower insulin secretion during OGTT among non-diabetic patients with ADPKD and non-ADPKD controls. In patients with ADPKD such an influence was observed for carriers of one or two K alleles, while among controls it was significant only among KK homozygotes. Results of clinical studies on the E23K polymorphism indicated that among non-diabetic subjects with IGT diagnosed individuals or patients with diabetes type 2, the K23 variant is significantly associated with lower insulin secretion during OGTT. Our study confirmed this association for ADPKD patients, but it is possible that the model of genotype-phenotype association in ADPKD and non-ADPKD subjects is different (eg. dominant vs. recessive). Such results support the necessity for further study on the influence of this variant on the risk of pre- and post-transplant diabetes development among ADPKD patients. It is possible that contrasting research results on the frequency of post-transplant diabetes in this group of patients will be clarified in the future by genetic studies.

Conflicts of interest
The authors declare that they have no conflicts of interest related to the contents of this article.


Maria Pietrzak-Nowacka1, Krzysztof Safranow2, Agnieszka Bińczak-Kuleta1, Leszek Domaniński1, Andrzej Ciechanowicz3, Kazimierz Ciechanowski1

1 Department of Nephrology, Transplantology and Internal Medicine. Pomeranian Medical University. Szczecin (Poland).
2 Department of Biochemistry and Medical Chemistry. Pomeranian Medical University. Szczecin (Poland).
3 Department of Laboratory Diagnostics and Molecular Medicine. Pomeranian Medical University. Szczecin (Poland).

Correspondence: Maria Pietrzak-Nowacka
Department of Nephrology, Transplantology and Internal Medicine. Pomeranian Medical University. Szczecin, Poland. mariola.nowacka@o2.pl

Efecto del allopurinol sobre el hábito tabáquico
Nefrologia 2013;33(6):858-60

Sr. Director:
El allopurinol es un inhibidor de la xantina oxidasa. La xantina oxidasa es una enzima que tiene como sustratos la hipoxantina y el oxígeno, y como productos el ácido úrico y radicales libres. Los efectos beneficosos del allopurinol no son debidos solo a la disminución del ácido úrico, sino también a la disminución del estrés oxidativo y al aumento de la hipoxantina y el oxígeno tisular (figura 1). Así, actualmente hay datos que permiten afirmar que el allopurinol mejora la disfunción endotelial, disminuye el estrés oxidativo vascular, mejora la isquemia miocárdica y disminuye la hiperтроfia ventricular izquierda. Además, en varios estudios se ha demostrado que el allopurinol disminuye la mortalidad total2,3 y en estudios con menor número de pacientes se ha sugerido que disminuye el número de eventos cardiovasculares4,5.

En un estudio previo de 112 pacientes con insuficiencia renal crónica estadio 3, todos ellos sin historia de eventos cardiovasculares previos, observamos que ninguno de los 30 pacientes que tomaban allopurinol fumaban (0 % fumadores con allopurinol frente a 20,73 % fumadores entre los que no lo tomaban; p = 0,029). Como el número de pacientes era...