Genome Announcement

Draft genome sequence of Chryseobacterium limigenitum SUR2^T (LMG 28734^T) isolated from dehydrated sludge

Jure Škraban^a, Nikos C. Kyriades^b, Nicole Shapiro^b, William B. Whitman^c, Janja Trček^a,d,*

^a University of Maribor, Faculty of Natural Sciences and Mathematics, Department of Biology, Maribor, Slovenia
^b DOE Joint Genome Institute, Walnut Creek, CA, USA
^c University of Georgia, Department of Microbiology, Athens, GA, USA
^d University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor, Slovenia

A R T I C L E I N F O
Article history:
Received 21 December 2016
Accepted 1 March 2017
Available online 18 July 2017
Associate Editor: Rodrigo Galhardo

Keywords:
Chryseobacterium limigenitum
Genome
Arsenite
Lactamase

A B S T R A C T
The type strain SUR2 of the novel species Chryseobacterium limigenitum was isolated from a dehydrated sludge of the municipal sewage treatment plant in Dogoše near Maribor in Slovenia. The draft genome, with 60 contigs, 4,697,725 bp, 34.4% of G+C content, was obtained using the Illumina HiSeq 2500-1 platform. Joint Genome Institute Microbial Genome Annotation Pipeline (MGAP v.4) has identified 4322 protein-coding sequences including resistance genes against arsenic and other heavy metals. In addition, a subclass B3 metallo-β-lactamase, which confers resistance to penicillins, cephalosporins and carbapenems, was also present in the genome. The genome sequence provides important information regarding bioremediation potential and pathogenic properties of this newly identified species.

© 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Additionally, was identified. The genome sequencing described in this work was conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research has been partially funded by the Slovenian Research Agency through program P2-0006.

References

Conflicts of interest

All authors declare, that there are no conflicts of interest regarding the submitted manuscript.

Acknowledgements

The genome sequencing described in this work was conducted by the U.S. Department of Energy Joint Genome Institute, a