Genome Announcement

Genome sequence of Streptomyces mangrovisoli MUSC 149T isolated from intertidal sediments

Hooi-Leng Ser a,b, Wen-Si Tan c, Nurul-Syakima Ab Mutalib d, Wai-Fong Yin c, Kok-Gan Chan c, Bey-Hing Goh a,d,e,* , Learn-Han Lee a,d,e,*

a Monash University Malaysia, School of Pharmacy, Novel Bacteria and Drug Discovery (NBD) Research Group, Selangor Darul Ehsan, Malaysia
b Monash University Malaysia, Jeffrey Cheah School of Medicine and Health Sciences, Biomedical Research Laboratory, Selangor Darul Ehsan, Malaysia
c University of Malaya, Institute of Biological Sciences, Division of Genetics and Molecular Biology, Kuala Lumpur, Malaysia
d University Kebangsaan Malaysia, UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia
e University of Phayao, School of Pharmaceutical Sciences, Center of Health Outcomes Research and Therapeutic Safety (Cohorts), Phayao, Thailand

A R T I C L E I N F O

Article history:
Received 22 December 2016
Accepted 31 January 2017
Available online 6 September 2017
Associate Editor: John McCulloch

Keywords:
Genome sequence
Streptomyces
Mangrove
Antismash
Bioinformatics analysis

A B S T R A C T

As the largest genus in Actinobacteria family, Streptomyces species have the ability to synthesize numerous compounds of diverse structures with bioactivities. Streptomyces mangrovisoli MUSC 149T was previously isolated as a novel streptomycete from mangrove forest in east coast of Peninsular Malaysia. The high quality draft genome of MUSC 149T comprises 9,165,825 bp with G + C content of 72.5%. Through bioinformatics analysis, 21 gene clusters identified in the genome were associated with the production of bioactive secondary metabolites. The presence of these biosynthetic gene clusters in MUSC 149T suggests the potential exploitation of the strain for production of medically important compounds.

© 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Members of Streptomyces genus have received considerable attention and sparked interest among pharmaceutical industry as they are capable of synthesizing compounds of diverse structures with bioactivities including antibiotics, anti-rejection (immunosuppressant), antioxidant and anticancer.1–5 Streptomyces mangrovisoli MUSC 149T was previously isolated as a novel streptomycete with antioxidant potential from mangrove forest in east coast of Peninsular Malaysia6,7 and the strain has been deposited at two culture collection centers (=MCCC 1K00252T = DSM 42140T). Thus, the strain MUSC 149T was selected for genome sequencing as an attempt to identify biosynthetic gene clusters associated with secondary metabolite production.

* Corresponding author: School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
E-mails: lee.learn.han@monash.edu, leelearnhan@yahoo.com (L. Lee).
https://doi.org/10.1016/j.bjm.2017.01.013
1517-8382/© 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
content of 72.5%. The whole genome project of MUSC 149T was deposited at DDBJ/EMBL/GenBank under accession number LAVA00000000 and the version described in this paper is the second version (LAVA02000000).

Gene prediction was performed using Prodigal version 2.6, whereas rRNA and tRNA were predicted using RNAmmer and tRNAscan SE version 1.21.10–12 The assembly was uploaded for annotation to Rapid Annotation using Subsystem Technology (RAST).13 A total of 7461 protein-encoding genes was predicted and assigned to 442 subsystems, along with 69 tRNA and 6 rRNA genes (Fig. 1). Among the subsystems, most of the genes were involved in amino acids and derivatives metabolism (8.97%), followed by carbohydrates metabolism (8.40%) and cofactors, vitamins, prosthetic groups, pigments metabolism subsystems (4.91%).

In order to investigate its bioactive potential, the genome of MUSC 149T was further analyzed using antibiotics & Secondary Metabolite analysis shell (antiSMASH) version 3.0.14 The antiSMASH server revealed 21 gene clusters related to antibiotics and secondary metabolite biosynthesis, with four clusters showed more than 70% similarities to known gene clusters: venezuelin biosynthetic gene cluster (75%), ectoine biosynthetic gene cluster (75%), desferrioxamine B biosynthetic gene cluster (83%), and hopen biosynthetic gene cluster (85%). Previously, extract of MUSC 149T was found to possess antioxidant activity; the presence of siderophores biosynthetic gene clusters such as desferrioxamine B has further highlight the antioxidant potential of strain MUSC 149T.

In conclusion, we report the draft genome sequence of \textit{S. mangrovisoli} MUSC 149T. The availability of its genome sequence has revealed production of potentially medically useful compounds and certainly deserves further detailed study.

<table>
<thead>
<tr>
<th>Subsystem category distribution</th>
<th>Subsystem feature counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 32%</td>
<td>- Cofactors, vitamins, prosthetic groups, pigments (392)</td>
</tr>
<tr>
<td>- 68%</td>
<td>- cell wall and capsule (162)</td>
</tr>
<tr>
<td></td>
<td>- Virulence, disease and defense (74)</td>
</tr>
<tr>
<td></td>
<td>- Potassium metabolism (22)</td>
</tr>
<tr>
<td></td>
<td>- Photosynthesis (0)</td>
</tr>
<tr>
<td></td>
<td>- Miscellaneous (75)</td>
</tr>
<tr>
<td></td>
<td>- Phages, prophages, transposable elements, plasmids (6)</td>
</tr>
<tr>
<td></td>
<td>- Membrane transport (106)</td>
</tr>
<tr>
<td></td>
<td>- Iron acquisition and metabolism (36)</td>
</tr>
<tr>
<td></td>
<td>- RNA metabolism (126)</td>
</tr>
<tr>
<td></td>
<td>- Nucleosides and nucleotides (139)</td>
</tr>
<tr>
<td></td>
<td>- Protein metabolism (335)</td>
</tr>
<tr>
<td></td>
<td>- Cell division and cell cycle (34)</td>
</tr>
<tr>
<td></td>
<td>- Motility and chemotaxis (6)</td>
</tr>
<tr>
<td></td>
<td>- Regulation and cell signaling (64)</td>
</tr>
<tr>
<td></td>
<td>- Secondary metabolism (9)</td>
</tr>
<tr>
<td></td>
<td>- DNA metabolism (128)</td>
</tr>
<tr>
<td></td>
<td>- Fatty acids, lipids, and isoprenoids (315)</td>
</tr>
<tr>
<td></td>
<td>- Nitrogen metabolism (44)</td>
</tr>
<tr>
<td></td>
<td>- Dormancy and sporulation (11)</td>
</tr>
<tr>
<td></td>
<td>- Respiration (167)</td>
</tr>
<tr>
<td></td>
<td>- Stress response (186)</td>
</tr>
<tr>
<td></td>
<td>- Metabolism of aromatic compounds (113)</td>
</tr>
<tr>
<td></td>
<td>- Amino acids and derivatives (717)</td>
</tr>
<tr>
<td></td>
<td>- Sulfur metabolism (76)</td>
</tr>
<tr>
<td></td>
<td>- Phosphorus metabolism (47)</td>
</tr>
<tr>
<td></td>
<td>- Carbohydrates (871)</td>
</tr>
</tbody>
</table>

Fig. 1 – Subsystem category distribution of \textit{Streptomyces mangrovisoli} MUSC 149T (based on RAST annotation server).
Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgments

This work was supported by PVC Award Grant (Project No. PVC-ECR-2016), External Industry Grant (Biotek Abadi Vote No. GBA-808813), Fundamental Research Grant Scheme (FRGS/1/2013/SKK01/MUSM/03/3), MOSTI eScience funds (Project No. 06-02-10-SF0300) awarded to L.H.L. and MOSTI eScience funds (Project No. 02-02-10-SF0215) awarded to B.-H.G., and a University of Malaya for High Impact Research Grant (UM-MOHE HIR Nature Microbiome Grant No. H-50001-A000027 and No. A000001-50001) and PPP Grant (PG090-2015B) awarded to K.-G.C.

REFERENCES