Chagas disease reactivation in a patient non-Hodgkin’s lymphoma

Reactivación de la enfermedad de Chagas en un paciente con linfoma no Hodgkin

M.H. Vicco, L.I. César, H.M. Musacchio, D.O. Bar, I.S. Marcipar, O.A. Bottasso

Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
Servicio de Clínica Médica, Hospital J. B. "Iturraspe", Santa Fe, Argentina
Servicio de Hematología, Hospital J. B. "Iturraspe", Santa Fe, Argentina
Instituto de Inmunología, Facultad de Medicina, Universidad Nacional de Rosario, Santa Fe, Argentina

Received 27 February 2014; accepted 14 April 2014
Available online 2 June 2014

Chagas disease is a chronic infection caused by the protozoan Trypanosoma cruzi (T. cruzi). It has a worldwide distribution affecting at least 8–10 million people. In non-endemic countries, Chagas disease is an emerging illness and has become a public health problem. Most of the patients are asymptomatic, but about 30% of the individuals infected with T. cruzi develop clinically relevant syndromes involving the gastrointestinal tract and the heart. Actually, another important complication with poor prognosis is Chagas disease reactivation in relation with immunosuppressive states.

A 65-year-old man was hospitalized because of multiple bilateral, and painful cervical, axillary and inguinal lymphadenopathies, fever, night sweats and weight loss of two months evolution. In addition to positive serology for T. cruzi infection, he suffered arterial hypertension that was treated with angiotensin-converting enzyme inhibitors and chronic Chagas heart disease. He had not received treatment with anti-T. cruzi compounds. Vital signs were within normal range. Routine laboratory tests showed normal hemogram, renal and liver function tests, except increased lactate dehydrogenase (1280 U/L) and decreased serum albumin levels (2.6 g/dL). Serological tests for HIV were negative. Chest X-ray examination was normal. A twelve-lead electrocardiogram revealed persistent precordial S waves. A 2D and M mode echocardiogram only indicated mild left ventricular hypertrophy. A lymph node biopsy was performed and a diagnosis of non-Hodgkin lymphoma was established. Prechemotherapy treatment with dexamethasone (16 mg/day) was instituted. Ten days later the patient suddenly worsened with oligoanuria, hypotension and sustained ventricular tachycardia. New laboratory tests revealed renal failure with normal values of serum potassium, sodium, calcium and phosphorus. Blood and urine cultures were negative. Direct search for T. cruzi in peripheral blood was performed through microscopic examination ofuffy coat, yielding positive results. The patient died one day after. Autopsy was not performed.

On admission, a serum sample was collected to assess the levels of antibodies against anti-homogenate parasite, anti-FRA (flagellar repetitive antigen of T. cruzi), anti-p2β
Figure 1 Antibody levels after 10 days of immunosuppressive treatment initiation.

Table 1 Characteristics of reported cases of Chagas disease reactivation in patients with hematological neoplasms undergoing chemotherapy.

<table>
<thead>
<tr>
<th>Case report</th>
<th>Underlying neoplasm</th>
<th>Chemotherapy</th>
<th>Length of time for reactivation</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franca et al.</td>
<td>Male</td>
<td>LL</td>
<td>N/A</td>
<td>Nifurtimox</td>
<td>Death</td>
</tr>
<tr>
<td>Metze et al.</td>
<td>Male</td>
<td>LL</td>
<td>N/A</td>
<td>Nifurtimox</td>
<td>Death</td>
</tr>
<tr>
<td>Rassi et al.</td>
<td>Male</td>
<td>LL</td>
<td>N/A</td>
<td>Benznidazole</td>
<td>Death</td>
</tr>
<tr>
<td>Rezende et al.</td>
<td>Female</td>
<td>LL</td>
<td>1 month after the first cycle of chemotherapy</td>
<td>CHOP</td>
<td>Survival</td>
</tr>
<tr>
<td>Salgado et al.</td>
<td>Female</td>
<td>NL</td>
<td>2 years after the last cycle of chemotherapy</td>
<td>CHOP</td>
<td>Survival</td>
</tr>
<tr>
<td>Fontes et al.</td>
<td>Female</td>
<td>LL</td>
<td>1 month after the last cycle of chemotherapy</td>
<td>CHOP + BLEO</td>
<td>Survival</td>
</tr>
<tr>
<td>Oliveira et al.</td>
<td>Female</td>
<td>NL</td>
<td>N/A</td>
<td>Benznidazole</td>
<td>Survival</td>
</tr>
</tbody>
</table>

(T. cruzi ribosomal protein), and anti-B13. A blood sample was also investigated for the direct presence of T. cruzi, revealing no parasites. Another blood sample was taken after 10 days of immunosuppressive treatment initiation. Protein expression, purification and measurement of antibodies by immunoassay were performed as described elsewhere. Serum levels of antibodies are shown in Fig. 1.

Chagas disease reactivation is defined as an increase in parasitemia detected by direct parasitological techniques in patients with chronic Chagas disease. Most common clinical presentations include heart failure due to acute myocarditis, acute onset of malignant ventricular arrhythmias, meningoencephalitis, fever, and involvement of the esophagus, colon and liver. The few reports of Chagas disease reactivation in hematologic neoplasms are mostly associated with blood transfusion administration. Rassi et al. described changes in the course of T. cruzi infection but only after long-term corticosteroid therapy (46–60 days). Table 1 summarizes published cases reported of Chagas disease reactivation related with hematological neoplasms under chemotherapy.

Non-Hodgkin lymphoma might induce several immunological disturbances affecting cellular and humoral immune response, which might induce Chagas disease reactivation. However, there is no evidence to support oncohematological diseases as a risk factor. The relevance of our report relies mainly on the rapid onset of Chagas disease reactivation, just after 10 days of corticosteroid treatment, and its poor clinical course. Moreover, this is the first description that refers to the levels of anti-p2β, anti-B13, anti-parasite homogenate and anti-FRA, during Chagas disease reactivation. Anti-p2β and anti-B13 have been shown to play a pathogenic role in the development of heart tissue lesions. While not routinely employed, these antibody measurements may be useful for assessing Chagas disease staging, prognosis and treatment response.
As depicted in Table 1, Chagas disease reactivation usually occurs during chemotherapy, even during the induction phase, like in this case. Only two cases developed Chagas disease reactivation after chemotherapy completion.

There are no consensus guidelines about how to monitor patients with hematological neoplasms with *T. cruzi* infection. Although some authors recommend the use of quantitative polymerase chain reaction (qPCR) for earlier diagnosis of *T. cruzi* reactivation, these studies have been performed in HIV patients and/or in immunosuppressive states due to organ transplantation. Furthermore, qPCR should be validated in large clinical trials. On the other hand, *Argentine consensus on Chagas disease management* does not recommend qPCR for the monitoring of Chagas disease reactivation in patients with malign hematological disorders.

The possibility of rapid fatal outcome, as in our case, in patients with Chagas disease reactivation raises the possibility of early treatment with benznidazole or nifurtimox in all patients with positive serology for *T. cruzi* and clinically significant immunosuppression. Anyhow, Chagas disease reactivation should always be taken into account if the patient presents compatible symptoms.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

This work was sponsored by the CONICET (Argentinean Research Council) and Universidad Nacional del Litoral, Argentina. M.H.V thanks CONICET for his fellowship. I.S.M and O. A. B. are members of the CONICET career.

References

