Guided Transcatheter Valvulotomy in Pulmonary Atresia With Intact Ventricular Septum

Juan Alcibar, Alberto Cabrera, Natividad Peña, Christian Baraldi, Josune Arriola, and José Aramendi

Sección de Hemodinámica, Servicio de Cardiología, Hospital de Cruces, Baracaldo, Vizcaya, Sección de Cardiología Pediátrica, Hospital de Cruces, Baracaldo, Vizcaya, Servicio de Cirugía Cardíaca, Hospital de Cruces, Baracaldo, Vizcaya, Spain.

Transcatheter valvulotomy in pulmonary atresia with an intact ventricular septum can be used as a first step to create biventricular circulation and to stimulate further development of the hypoplastic right ventricle. We describe our experience in a case of a neonate with this congenital cardiac defect who underwent successful transcatheter perforation of the atretic pulmonary valve. This report highlights the utility of a special technique based on the use of a gooseneck snare positioned just above the atretic valve to guide the advance of a coronary guidewire. Other therapeutic alternatives are considered.

Key words: Pulmonary atresia. Valvulotomy. Intact ventricular septum.

INTRODUCTION

Pulmonary atresia with an intact ventricular septum (PAIVS) is a serious heart condition that accounts for 0.7% to 3.1% of all cases of congenital heart disease. 1 Except in patients with severe right ventricular hypoplasia or right ventricle-dependent coronary circulation, establishing right ventricle-pulmonary artery continuity may be the first step to achieving biventricular circulation, as indicated in the guidelines for clinical practice and invasive techniques in pediatric cardiology. 2 To this aim, several techniques have been described for perforation of the atretic membrane. Early efforts were mechanical, using a conventional guidewire. 3-6 Later techniques involved laser 7 and radiofrequency, 5,6,8-11 followed by conventional balloon valvuloplasty.

To limit the possibility of cardiac perforation, which has been reported with all of these techniques, we performed transcatheter perforation in a newborn with this severe heart defect, using a special coronary guidewire guided by an open gooseneck snare positioned just above the atretic valve, followed by valvuloplasty.

CLINICAL CASE

A term neonate born to a primiparous mother was admitted to our hospital for cyanosis 18 hours after birth. The examination disclosed a weight of 3580 g, generalized cyanosis and 50% saturation at 100% FiO2, normal pulses, blood pressure 60/37 mm Hg, and heart rate 130 bpm. On auscultation, a mild functional murmur was detected at the left sternal border, with a single second sound. The ECG disclosed sinus rhythm with QRS axis +100º and right atrial growth. Heart disease was diagnosed by Doppler ultrasound, which showed reduced tricuspid mobility, an 8.5 mm annulus (Z=-3.5), anterograde flow and severe regurgitation, with a gradient of 130 mm Hg. The atretic pulmonary valve presented a favorable membranous morphology.
and a diameter of 8 mm; the pulmonary trunk and branches were well developed. The ventricular septum was intact, although the atrial septum showed a small, 4 mm right-to-left defect. Following the diagnosis of PAIVS, the patient was stabilized with prostaglandin E1 at a dose of 0.5 µg/kg/min and dopamine at 8 µg/kg/min, achieving 94% saturation.

On the third day of life, catheterization was performed by right femoral arterial/venous puncture and (with the systemic saturation levels indicated above) manometry data were as follows: right atrium: a, 14 mm Hg; mean, 10 mm Hg; right ventricle, 110/0-15 mm Hg; left atrium: mean, 9 mm Hg; left ventricle: 64/0-9 mm Hg. Left anteroposterior ventriculography disclosed a morphologically normal ventricle and a left aortic arch, clearly visible anterograde opacification of the coronary arteries and, by the ductus, well-developed pulmonary atresia. Right ventriculography demonstrated a markedly underdeveloped tripartite right ventricle with valvular dimensions indicated above, pulmonary atresia and severe tricuspid regurgitation (Figure 1A). The sinuses were not visualized and the coronary arteries showed no contrast enhancement by dependent circulation. Valvotomy was decided on the basis of these findings. Using the femoral artery approach, the catheter was advanced to the arch by retrograde direction and a 4 Fr Judkins right catheter was placed in the ductus. A 5 mm (microvein) Amplatz Goose Neck snare loop was then advanced through the catheter, the open loop was placed over the atretic valve and the coronary catheter was withdrawn to the descending aorta. Another 5 Fr Judkins right catheter was then introduced through the femoral vein, but it could not be properly positioned in the infundibulum. It was exchanged for a 5 Fr balloon wedge pressure catheter (Arrow International), which was coaxially placed in the infundibulum with its distal
and/or infundibulum resection is required. 4-6 In this re-
in only 50% of cases; systemic-pulmonary shunt 
that transcatheter valvotomy is a definitive treatment 
continuity. As in our patient, experience has shown 
membranous-type valvular atresia with anatomical 
quintessential development, a patent infundibulum, and a 
ble anatomical conditions: a tripartite right ventricle 

DISCUSSION

Transcatheter valvotomy in PAIVS requires favora-
able anatomical conditions: a tripartite right ventricle with a moderate degree of hypoplasia allowing subse-
quent development, a patent infundibulum, and a 
membranous-type valvular atresia with anatomical 
continuity. As in our patient, experience has shown 
that transcatheter valvotomy is a definitive treatment in only 50% of cases: systemic-pulmonary shunt and/or infundibulum resection is required.4-6 In this re-
gard, we were aware of the significantly underdeve-
loped ventricle in our patient, and valvular perforation was attempted as a palliative measure before creating a shunt. Based on the extensive experience of Jou-kou 
Wang et al.,5 transcatheter valvotomy was the defini-
tive treatment in PAIVS, with a tricuspid valve Z value 
≥ -0.1, pulmonary valve Z value ≥4.1 and right-to-
left ventricular area ratio ≥0.65. All patients with tri-
cuspid valve Z value ≤-0.8 and pulmonary valve Z va-

orifice close to the valve. Then, guided by the open 

snare loop as a «target» and with rotating movements 

over the valve, a 0.014 inch PT Graphix Standard co-
ronary guidewire (Boston-Scimed) was advanced; once past the barrier, it was inserted inside the loop until it reached the descending aorta through the duc-
tus (Figure 1B). In order to gain support and stability, the guidewire was caught and withdrawn in the femo-
ral artery, and with this thrust the valve was dilated 
with a 3×20 Maverick balloon catheter (Boston-
Scimed) to 8 atmospheres, and subsequently with a 
Balt 8×20 (Montmorency) to 6 atmospheres, observ-
ning significant indentation with both maneuvers. 

Mechanical ventilation was maintained during the fo-
llowing days, prostaglandins were reduced, and there 
was an expected decrease in saturation. Twenty days 
after the valvotomy, a trunk-to-trunk systemic/pulmo-
nary shunt and ligation of the ductus were performed. 
The infant remained stable with saturation levels of 
90% and was discharged six days later. Doppler ultra-
sound prior to discharge disclosed good pulmonary 
flow, with a gradient of 32 mm Hg, slight pulmonary 
regurgitation, absence of tricuspid regurgitation and good 
functioning of the shunt.

Based on the experience described, and contempla-
ing the application of this technique in less complex 
patients, we suggest that mechanical valvotomy using 
a special guidewire for obstructive coronary condi-
tions and targeted by a transductal gooseneck snare 
may be an effective procedure to establish right ventri-

cle-pulmonary artery continuity in anatomically indi-
cated cases of PAIVS.

IN MEMORIAM

To Pablo Martínez Corrales, cardiac surgeon and 
friend, provider of invaluable help and encouragement in interventional pediatrics

REFERENCES

Pulmonary atresia with intact ventricular septum. Mount Kisco: 
F, Moreno Granado F, Pan Álvarez-Osorio M, Santos de Soto J. 
Guías de actuación clínica de la Sociedad Española de 
Cardiología. Requerimientos y equipamiento de las técnicas inva-