In recent years there has been a huge proliferation in the number of studies examining the diagnostic and prognostic value of the numerous and varied biochemical markers of chronic heart failure. These markers are the mediators or expression of the neurohumoral activation associated with this disease—a consequence of left ventricular dysfunction and its hemodynamic and clinical manifestations (reduction in cardiac output and hypotension, an increase in filling pressure, and pulmonary congestion).1

Neurohumoral activation in heart failure is maintained over the long term and leads to hemodynamic changes (increased cardiac activity, peripheral vasoconstriction, hydrosaline retention and increased vo-laemia) mediated by sympathetic hyperactivity, the activation of the renin-angiotensin-aldosterone system, and increased endothelial production of vasopressin and endothelin. This translates into increased plasma concentrations of different markers such as noradrenaline, angiotensin II, aldosterone, vasopres- sin, and endothelin, among others. In turn, this neurohumoral activation and its effects stimulate other responses with opposing effects (e.g., those involving vasodilators, diuretics, natriuretics and antiprolifera-tive molecules), which results in increased plasma concentrations of the different natriuretic peptides, bradykinins, adrenomedullin and nitrous oxide etc.1

The result of all these regulations and contraregula-tions is that patients with heart failure show a great quantity of circulating neurohormones and other mediators in high concentrations. These substances can nowadays be measured with precision and may perhaps serve as markers of clinical status, disease progress, prognosis and even the response that might be expected to treatment. In fact, the prognostic value of noradrenaline and atrial natriuretic peptide have been known for 20 years (since the classic work of Cohn et al2 and Keogh3). More recently, papers have been published on the prognostic value of angiotensin II,4 aldosterone,1 endothelin,5 and the brain natriuretic peptides BNP and NT-proBNP.6 These last two are also of great value in the diagnosis of heart failure and ventricular dysfunction,7 and are very useful for monitoring the efficacy of treatment.8

However, a basic question (which might have im-portant practical and economic implications) needs to be answered: are all biochemical neurohumoral mar-kers of heart failure as good as one another, or does each have a different meaning with respect to the stratification of prognosis or the monitoring of treat-ment etc? In other words, does any particular marker have greater prognostic value than any other? Are some markers more useful for diagnostic screening for heart failure, etc? From a conceptual and pathophysiologi-cal standpoint, it is clear that not all markers are equal since they are activated in response to very different stimuli (some common to all of them), since they are an expression of the activity of very different systems (vasoconstrictors or vasodila-tors, natriuretics or retainers of salt and water, etc), and since they have very varied and complex effects (albeit with important overlaps). In addition, in clinical studies that have tried to correlate the levels of these neurohormones with the prognosis of heart di-sease, the results have been very variable. In some, for example, noradrenaline was found to be the most powerful prognostic marker, whereas in others, natriuretic peptides, angiotensin II or endothelin were shown to have significant value.1 Although the diffe-
Biochemical Markers in Heart Failure: Are They All the Same?

Anguita Sánchez M.

This document discusses the role of biochemical markers in heart failure, including the use of specific markers like BNP, NT-proBNP, aldosterone, and endothelin. The text explores the prognostic value of these markers, their relationship to disease severity, and the influence of pharmacological treatment. It also addresses the need for further research to clarify the prognostic significance of these markers. The references at the end of the article provide additional insights into the field of heart failure research.