Left Ventricular Dysfunction Induced by Monomorphic Ventricular Arrhythmias: Large Improvement in Ventricular Function After Radiofrequency Ablation of the Arrhythmic Source

Juan C. Fernández-Guerrero, Luis Tercedor, Miguel Álvarez, José M. Lozano, Mercedes González-Molina and José Azpitarte

Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Granada, Spain.

INTRODUCTION

Left ventricular systolic dysfunction related to ventricular arrhythmias is a relatively poorly understood entity. To increase our knowledge base, we describe 5 patients in whom the link between ventricular dysfunction and ventricular arrhythmia was unequivocally established. All patients had repetitive monomorphic ventricular arrhythmias and left ventricular systolic dysfunction (ejection fraction ≤40% and end-diastolic size ≥55 mm). The arrhythmogenic source was identified by electrophysiological study (right ventricle in 2 patients, left ventricle in 2, and left sinus of Valsalva in one), and was eliminated in all patients by radiofrequency catheter ablation. At 7±2 months post-ablation, large improvements were seen in left ventricular function and remodeling (ejection fraction ≥50% and end-diastolic size ≤51 mm in all cases), with no recurrence of arrhythmia during follow-up (10-69 months). This finding confirms that recurring ventricular arrhythmias can induce left ventricular dysfunction which may be reversible after ablation.

Key words: Tachycardia. Catheter ablation. Heart failure. Cardiomyopathy.

Disfunción ventricular izquierda inducida por arritmias ventriculares monomórficas: gran mejoría de la función ventricular tras ablación con radiofrecuencia del foco arrítmico

La disfunción ventricular izquierda ocasionada por arritmias ventriculares es una entidad poco conocida. Para contribuir a su difusión presentamos los casos de 5 pacientes en los que se pudo establecer de forma inequívoca la conexión arritmia-disfunción ventricular. Todos tenían arritmias ventriculares monomórficas repetitivas y disfunción ventricular izquierda (fracción de eyecpción ≤40% y dimensión telediastólica ≥ 55 mm). En el estudio electrofisiológico se detectó un foco arritmogénico intraventricular localizado en el ventrículo derecho en 2 casos, en el ventrículo izquierdo en otros 2 y en el seno de Valsalva izquierdo en el quinto; en todos fue suprimido mediante ablación con catéter. A los 7 ± 2 meses postablación se observó una gran mejoría de la función sistólica y el remodelado ventricular izquierdo (fracción de eyecpción ≥ 50% y dimensión telediastólica ≤ 51 mm en los 5 enfermos), sin recurrencia de la arritmia durante el seguimiento (10-69 meses). Estos hallazgos confirman que las arritmias ventriculares repetitivas pueden causar disfunción ventricular, reversible tras ablación con radiofrecuencia.

Palabras clave: Taquicardia. Ablación con catéter. Insuficiencia cardíaca. Miocardipatía.

PATIENTS AND METHODS

Between November 1997 and November 2003 in our unit, 37 patients with ventricular tachycardia and no known underlying pathology were studied. Five of these patients, whose main characteristics are shown in the

Table, had left ventricular systolic dysfunction. The clinical diagnosis was dilated cardiomyopathy in 4 cases and myocarditis in 1. The ventricular arrhythmia consisted of high-density ventricular ectopic activity associated with runs of repetitive nonsustained ventricular tachycardia in 4 cases (Figure 1). Ablation was indicated on the basis of palpitations in four patients, and was further supported in one of them (Case 1) by the fact that the patient’s ventricular function showed evidence of deterioration 11 months after the arrhythmia was detected. In Case 4 there were no palpitations and ablation was performed for suspected tachycardia-induced cardiomyopathy, based on our previous experience. In all cases coronary disease was excluded by angiography.

After the diagnostic electrophysiological study, activation mapping was performed starting with the right ventricle in all patients except Case 5. In this patient the initial approach in the left ventricle suggested by the electrocardiographic pattern (RS in V2), was ineffective; hence an irrigated catheter was successfully inserted in the proximity of the tricuspid ring.

After ablation, M-mode echocardiography was used to measure the dimensions of the left ventricle, and the ejection fraction was calculated with the Teichholz formula. Follow-up echocardiography was performed 7±2 months later. Long-term follow-up (4-69 months) included Holter monitoring in addition to the usual examinations.

RESULTS

Ablation with a mean of 5.4 radiofrequency applications (range, 2-10) was performed without complications (Figure 2). No recurrence of the primitive ventricular arrhythmia was detected during follow-up. In 2 cases isolated ventricular premature beats with a different morphology were detected. All patients were asymptomatic at the most recent follow-up visit and were not receiving medication, except for 2 patients who were taking antihypertensive drugs. Post-ablation echocardiography showed an evident increase in the ejection fraction and a decrease in the left-ventricular end-systolic dimension in all 5 cases (Figure 3).

DISCUSSION

The main interest of the cases presented resides in the fact that ventricular dysfunction induced by ventri-

Ventricular arrhythmia substantially improved with abolition of the arrhythmogenic source. All the previous publications on this subject are individual case reports, with the exception of the study by Grimm et al., which included four patients. The first of the case reports was published in 1989 and the treatment consisted of anti-tachycardia pacemaker placement. In the remaining cases, radiofrequency ablation resolved the repetitive tachcardia or the frequent ventricular premature beats originating in the right ventricular outflow tract, except in 2 cases. The patients in our series had nonsustained monomorphic arrhythmia, but with a repetitive, incessant character. The location of the source varied, but did not impede successful ablation in all 5 cases.

It is more difficult to establish suspicion of this entity than when dealing with tachycardia-induced cardiomyopathy due to supraventricular arrhythmia. With the weight of convention, it is logical that concurrent ventricular systolic dysfunction and arrhythmia would be interpreted as a result of dilated cardiomyopathy. Therefore, it is necessary to wait until ventricular function improves after abolishing the arrhythmia to establish the definitive diagnosis. This condition may be more frequent than has been suspected up to now.

Figure 3. The left ventricular ejection fraction (EF) increased dramatically in all patients after suppressing the arrhythmia, and the end-diastolic dimension (EDD) decreased, indicating favorable ventricular remodeling. Baseline data (left in both panels) were obtained within the first 48 hours post-ablation. Data on the right were obtained several months after.

TABLE. Profile of Demographic, Clinical and Arrhythmia Factors in the 5 Patients

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
<th>Case 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>49</td>
<td>71</td>
<td>21</td>
<td>59</td>
<td>47</td>
</tr>
<tr>
<td>Sex</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>Addiction</td>
<td>Alcohol</td>
<td>–</td>
<td>Cocaine</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>NYHA class</td>
<td>II</td>
<td>II</td>
<td>I</td>
<td>III</td>
<td>I</td>
</tr>
<tr>
<td>Palpitations</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Left ventricular EDD, mm</td>
<td>63</td>
<td>55</td>
<td>57</td>
<td>66</td>
<td>55</td>
</tr>
<tr>
<td>Left ventricular EF, %</td>
<td>40</td>
<td>40</td>
<td>35</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Evolution time of LVSD, months</td>
<td>27</td>
<td>2/3</td>
<td>2</td>
<td>30</td>
<td>108</td>
</tr>
<tr>
<td>Evolution time of arrhythmia, months</td>
<td>108</td>
<td>2/3</td>
<td>13</td>
<td>30</td>
<td>108</td>
</tr>
<tr>
<td>Ventricular complexes in 24 h, %</td>
<td>57</td>
<td>53</td>
<td>69</td>
<td>40</td>
<td>47</td>
</tr>
<tr>
<td>Morphology of ventricular complexes</td>
<td>Complete LBBB, inferior axis</td>
<td>Complete RBBB, inferior axis</td>
<td>Complete LBBB, inferior axis</td>
<td>Complete LBBB, inferior axis</td>
<td>Complete LBBB, superior axis</td>
</tr>
<tr>
<td>Repetitive VT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Mean 24-h HR, bpm</td>
<td>89</td>
<td>68</td>
<td>78</td>
<td>100</td>
<td>83</td>
</tr>
<tr>
<td>Atrioventricular conduction</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Location of arrhythmic focus</td>
<td>RVot</td>
<td>LVot</td>
<td>Left sinus of Valsalva</td>
<td>LVot</td>
<td>Paraseptal RV base</td>
</tr>
</tbody>
</table>

*RBBB indicates right bundle branch block; LBBB, left bundle branch block; LVSD, left ventricular systolic dysfunction; EDD, end-diastolic dimension; HR, heart rate; EF, ejection fraction; NYHA, New York Heart Association; VT, ventricular tachycardia; RVot, right ventricular outflow tract; LVot, left ventricular outflow tract; RV, right ventricle.
yopathy and frequent premature beats, considerable improvement in left ventricular function was observed in 4 of the 5 patients who experienced a notable drug-induced decrease in ventricular ectopic activity. This suggests that some patients diagnosed with ventricular arrhythmia secondary to dilated cardiomyopathy may actually have had the opposite problem: primitive ventricular arrhythmia—frequent premature beats in this case—able to induce ventricular dysfunction in a healthy heart.

With regard to the causative mechanism, we cannot invoke tachycardia as the determinant pathogenic factor in our patients, since the mean 24-hour heart rate was only slightly elevated. Thus, we must look to other mechanisms to explain the ventricular dysfunction. One such factor, atioventricular asynchrony, can reduce the atrial contribution to ventricular filling and produce an increase in pressure through the baroreceptors that could trigger neurohumoral mechanisms typical of heart failure. Anomalous ventricular activation, common in ventricular ectopy, makes diastolic mitral regurgitation, and mechanical asynchrony (both interventricular and intraventricular) possible during contraction. The mechanism we propose for our cases is that an intraventricular conduction disturbance together with atrioventricular asynchrony and mild tachycardia led to the development of left ventricular dysfunction.

CLINICAL IMPLICATIONS

In the guidelines of the Spanish Society of Cardiology, the indication for ablation in monomorphic ventricular premature beats is considered exceptional. The recommendation for ablation in repetitive ventricular tachycardia is contemplated in patients with symptoms and those who fail to respond to or cannot tolerate drug therapy; tachycardia-induced cardiomyopathy is not mentioned. Considering that ablation in these tachycardia patients has a success rate of nearly 80% and a complication rate similar to that of other more common origins, the indication for this procedure should be assessed when there is frequent monomorphic ventricular arrhythmia (premature beats, whether isolated or associated with repetitive tachycardia) together with apparently idiopathic left-ventricular dysfunction.

REFERENCES