Intravascular Leiomyomatosis: the Surgical Challenge of Tumors With Cavoatrial Extension

To the Editor:

Intravenous leiomyomatosis is an uncommon benign tumor of the uterus that proliferates throughout the venous system, but does not invade it (Figure 1). Its treatment represents a surgical challenge requiring the coordination of several surgical teams. We describe the operative approach employed in a 44-year-old woman with this lesion and discuss the different surgical options.

The operation involved a single procedure, carried out jointly by cardiovascular, peripheral vascular and gynecologic surgeons, via simultaneous midline sternotomy and laparotomy. First, hysterectomy with bilateral salpingo-oophorectomy was performed, followed by the establishment of cardiopulmonary bypass between ascending aorta and superior vena cava, involving the right appendage as well. After induction of deep hypothermia, circulatory arrest was maintained for 20 minutes (rectal temperature: 15°C). With the 2 teams working simultaneously, right atrium, inferior vena cava, and left iliac vein were opened and the tumor was removed without difficulty (Figure 2). The postoperative period was uneventful and, four years later, the patient remained asymptomatic and presented no evidence of recurrence.

Many techniques have been employed in the treatment of tumors of this type, as well as renal and adrenal tumors that invade the inferior vena cava and/or right atrium.1,2 Basically, they include resection carried out in separate surgical procedures or in a single operation involving combined midline sternotomy and laparotomy. Those who defend successive procedures argue that the operative time required to perform this surgery in a single operation is too long and increases the risk of bleeding owing to the systemic heparinization necessitated by cardiopulmonary bypass.3 The first surgical session, performed under cardiopulmonary bypass, would consist of the resection of the tumor, achieving its elimination up to the renal veins. In a second stage, control of the vena cava would be established in the infrarenal region, adequate venous return would be ensured and the risk of incomplete resection and of embolization would be lowered.4 The interval between the 2 operations varies from one report to another but, in view of the slow growth of the tumor, some groups waited up to 6 weeks to undertake the second stage.

The other surgical strategy consists of a combined abdominal and thoracic procedure involving cardiopulmonary bypass, with circulatory arrest and deep hypothermia.5 We have found this approach to be safe in tumors of this type. It permits the removal of the tumor in a single operation, in a bloodless operative field, which facilitates the proper excision of the lesion with minimal preliminary manipulation of the inferior vena cava and the heart, manipulation that favors intraoperative embolization. The operative time is not excessively prolonged, since the tumor is usually easily removed. The increased risk of bleeding presented as an argu-
ment by those who defend the two-stage procedures was not especially notable in our case. Circulatory arrest with deep hypothermia avoids subjecting the liver and kidneys to periods of warm ischemia. Other advantages of this technique are the physical benefits for the patient and economic benefits for the system, as the surgery is performed in a single operation. We are of the opinion that a multidisciplinary surgical approach is of fundamental importance for the proper management of this lesion.

In view of the low incidence of embolism and the limited number of adhesions involved, some authors propose employing only laparotomy in the removal of tumors of this type.6 In our opinion, this approach should be avoided as it can pose a threat due to possible tumor emboli, lesions in vessels in which vascular control has not been achieved and the risk of an incomplete resection. A right atrial approach should be avoided for the same reasons. Deaths due to retroperitoneal exsanguination have been reported.

José M. Vallejo, Carlos Ballester, and Fernando Sorribas
Servicio de Cirugía Cardiovascular, Hospital Universitario Miguel Servet, Zaragoza, Spain.

REFERENCES


To the Editor:

We present the case of a patient with no structural heart disease who had complete paroxistic atrioventricular block (AVB) induced by exercise, with suprahisian block demonstrated by electrophysiology study (EPS).

The patient, a 71 year-old, hypertensive, diabetic woman with no other history of note, was referred to the emergency department with a 2-week history of asthenia and general malaise. Physical examination revealed arrhythmia, with no murmur or signs of heart failure; the remainder of the examination was unremarkable. A baseline electrocardiogram (ECG) showed Mobitz type II second degree AVB with a 3:1 conduction ratio and a narrow QRS complex (Figure 1). The only laboratory finding of note was mild hypokalemia (3.1 mEq/L). A few hours after admission the ECG was normal, with a PR interval of 216 ms and potassium concentrations of 3.6 mEq/L. Twenty-four hours after admission, however, she again suffered AVB, similar to the episode on admission, although this time the ionogram was normal. An EPS was undertaken to evaluate the distal conduction.

The EPS showed an HV interval of 36 ms and advanced suprahisian block, which became complete after atrial stimulation. The QRS complex was wide, and the atrial complex was dissociated from the His complex (Figure 2). The patient underwent a stress test with bicycle ergometry, and during the test there was complete atrioventricular block in the presence of marked tachycardia (Figure 3).

Figure 1. Electrocardiogram at the time of admission with Mobitz type II second degree atrioventricular block with a 3:1 conduction ratio.

Figure 2. Demonstration of complete, suprahisian atrioventricular block. Note how each QRS complex is preceded by a hisogram, and that the atriogram is dissociated from the hisogram.

Figure 3. Complete atrioventricular block during the exercise stress test.