A Friend In Need Is a Friend Indeed: the Case of Drug-Eluting Stents, Diabetes, and Small Vessel Size

Adnan Kastrati, Shpend Elezi, and Albert Schömig

Deutsches Herzzentrum and 1, Medizinische Klinik rechts der Isar Technische Universität, Munich, Germany.

Patients with diabetes mellitus consistently have shown a less favorable angiographic and clinical outcome after balloon angioplasty with or without bare metal stents (BMS) as compared to nondiabetic patients.1,2 Diabetic patients have an increased risk for restenosis and the clinical follow-up is characterized by a higher incidence of death, myocardial infarction and reinterventions.3 Thus, diabetes itself and the frequent coexistence of other important risk factors label individuals with this disease as highly complex patients and represents a challenging problem in modern invasive cardiology. In recent years, drug-eluting stents (DES) are increasingly being used in diabetic patients. Several well designed trials investigated outcomes after DES implantation in diabetic patients. Consistently, RAVEL subset analysis,4 DIABETES trial,5 subset analysis from TAXUS II, IV, V and VI,6 and SIRIUS7 demonstrated the superiority of DES over BMS in reducing the need for target vessel revascularization without showing, however, a clear mortality benefit in diabetic patients within the examined follow-up period.

In addition to diabetes, small vessel size also presents a significant challenge; treatment of lesions in small coronary arteries is difficult and often disappointing with various interventional modalities. Revascularization by aorto-coronary bypass surgery (CABG) is technically difficult and is associated with high failure rates, while revascularization by plain balloon angioplasty and BMS is associated with high complication and restenosis rates. The major problem with small size vessels is their limited capacity to accommodate for late lumen loss after stenting, the extent of which is independent of vessel size. Thus, the superiority of DES over BMS shown in dedicated studies and subset analyses focused on small coronary vessels9-11 comes not unexpected.

Abundant evidence is thus available in support of the increased risk of restenosis associated with diabetes and small vessel size; both these factors may serve as a “stress test” helping the evaluation of the relative performance of coronary devices including DES,12,13

The authors of the article that is published in this issue of REVISTA ESPAÑOLA DE CARDIOLOGÍA14 are to be commended for having combined both diabetes and small vessel size in their analysis creating a particularly high-risk scenario that is not unusual in the every-day practice of interventional cardiology. Patients with both these factors are those most in need of a treatment modality able to reduce effectively their inherently high risk of restenosis. For the first time we are provided with an analysis addressing interventions in a very small vessel size showing an average value of only 1.9 mm. To date, even dedicated studies on interventions in small vessels have reported average values of vessel size that were well above the 2 mm threshold. To realize the terrain on which Jiménez-Quevedo and colleagues14 have been operating, it is sufficient to consider that with a 1 mm late loss typical for BMS, more than half of their patients might have been at risk of restenosis if assigned to BMS. We are happily surprised to see an in-stent late lumen loss of 0.64 mm and an incidence of angiographic restenosis of 39.1% among BMS patients, although the BMS type they received has not the reputation of a “low-loss” stent.15 On the contrary, we are not surprised to see an irrelevant late lumen loss in the DES group of the study of Jiménez-Quevedo et al.14 In line with the described relationship between late lumen loss and restenosis,16 there was more than 75% risk reduction in angiographic and clinical restenosis with the use of this particular DES (sirolimus-eluting stent [SES]).14

The data presented do not show an advantage in
eluting stents (PES) in relatively selected cases, there is no differences when SES were compared to paclitaxel-performance. Although there were no significant permits differentiation of various DES in terms of subsets of patients create an optimal setting that analysis with SES would have been a difficult target in patients, lesions in small vessels as the authors do in the large randomized studies in diabetic patients with DES in this particular subset of diabetic patients with DES in small vessels, there is a theoretical increase in risk of late stent thrombosis which justifies a prolonged dual antiplatelet therapy.

As appropriately acknowledged by the authors, it is a subset analysis including a limited number of patients. Although it is scientifically correct to call for a subset analysis including a limited number of such complex patients to the high risk of restenosis and the initiative of exposing a large number of such high-risk patients are those most in need of this technology and a friend in need is a friend indeed.

REFERENCES


