Dilated Cardiomyopathy in a Patient With Acromegaly: Echocardiographic Development After Treatment

Acromegaly is a disease characterized by chronic growth hormone (GH) hypersecretion. Cardiovascular alterations such as hypertension (HT), left ventricular hypertrophy, and ischemic heart disease are common in this condition and represent the main cause of death. Nevertheless, dilated cardiomyopathy is rare, and on occasions it is difficult to attribute its origin to a direct effect of GH on the heart, due to the frequent coexistence of other possible causes.

We describe a patient with acromegaly and dilated cardiomyopathy who presented ventricular contractility and diameter normalization following treatment with a somatostatin analog.

The patient was a 61-year-old woman with a history of type 2 diabetes mellitus, hypercholesterolemia, hysterectomy plus double adnexectomy, and severe obstructive sleep apnea syndrome (OSAS). She had been diagnosed three years earlier with dilated cardiomyopathy with angiographically normal coronaries and severe ventricular dysfunction, and was being treated with carvedilol 25 mg, low-dose digoxin, ramipril 2.5 mg, spironolactone, and statins.

The physical examination showed a blood pressure of 120/60 mmHg and excess weight; pulmonary auscultation was normal and cardiac auscultation was rhythmic, with a Grade 1/6 ejection systolic murmur. The analyses showed a glucose level of 148 mg/dL; all other biochemistry, coagulation, and blood count results were normal.

The electrocardiogram (ECG) was in sinus rhythm at 40 bpm with left bundle-branch block, and the chest x-ray disclosed cardiomegaly.

Echocardiography performed 2 years before showed a left ventricular end-diastolic diameter (LVEDD) of 59 mm and left ventricular ejection fraction (LVEF) of 22% (Figure 1). In view of the development of diabetes mellitus and the presence of coarse physical traits, GH levels had been measured 15 months earlier and were found to be elevated. Magnetic resonance imaging of the pituitary gland showed a microadenoma on the left, near the cavity.

Fourteen months before the current visit, treatment was started with a somatostatin analog. At the 4-month follow-up from the start of treatment, echocardiography showed LVEDD 57 mm and LVEF 35%; at 14 months, LVEDD was 52 mm and LVEF, 56% (Figure 2). Following treatment, left bundle-branch block persisted on echocardiography. A reduction in the levels of GH and its mediator, IGF-1, and a decrease in the size of the microadenoma with respect to the baseline study were also seen.

Cardiovascular disease, in particular, ischemic heart disease, is the main cause of death in patients with acromegaly. The condition tends to induce left ventricular hypertrophy, regardless of the presence of hypertension, and is sometimes accompanied by myocarditis with lymphomononuclear infiltration, areas of monocyte necrosis, and proliferation of the collagen component. Possible valvular involvement, with mitral and tricuspid prolapse, has also been described.

The high prevalence of ECG and echocardiographic alterations in acromegalic patients (60%-70% according to some publications) has led some authors to recommend routine cardiologic study in these patients, even when they are asymptomatic.

Dilated cardiomyopathy, although rare, is possible in the long-term evolution of acromegaly. The presence of major physical traits in our patient supports the diagnosis of acromegaly from many years earlier.

Due to the high prevalence of hypertension, diabetes mellitus, and hyperinsulinism in acromegalic patients, some authors have questioned the presence of an authentic “acromegalic
cardiomyopathy," ie, secondary to the direct effect of excess GH on the heart. However, Marín Ortuño et al\(^7\) observed a high prevalence of diastolic involvement of the right ventricle (not subjected to increased afterload) in acromegaly. This data provides evidence for a direct effect of GH and/or its mediator, IGF-1, on the heart. High blood pressure and ischemic heart disease were ruled out in our patient as possible causes of dilated cardiomyopathy, and other causes (such as viral or toxic) are more difficult to prove.

Current consensus recommends surgery as the treatment of choice for acromegalic cardiomyopathy,\(^8\) although clinical, echocardiographic, and even histopathologic improvement has been shown after treatment with subcutaneous octreotide.\(^5,6\) Our patient was treated with somatostatin analogs, drugs that improve acromegalic cardiomyopathy,\(^9,10\) and reduce or normalize GH and IGF-1 levels in a high percentage of cases; the effect is observed within a few weeks, is reversible, and is not associated with hypopituitarism.\(^11\)

The case we present is one of the few described in which a patient with dilated cardiomyopathy was treated with octreotide as an initial option, with improvement in cardiac dilation and ventricular function.

José J. Gómez-Barrado, Soledad Turégano, Gonzalo Marcos, and Yolanda Porras
Unidad de Cardiología, Hospital San Pedro de Alcántara, Cáceres, Spain

REFERENCES


214 Rev Esp Cardiol. 2007;60(2):213-9

LETTERS TO THE EDITOR

Regression of Sick Sinus Syndrome After Treatment of Sleep Apnea Syndrome

To the Editor,

The association between sinus node dysfunction (SND) and sleep apnea-hypopnea syndrome (SAHS) is well recognized.\(^1\) Recently, our group confirmed an elevated prevalence of SAHS in patients with SND.\(^2\) In addition, there is indirect evidence of an association between atrial fibrillation and SAHS,\(^3\) and of bradyarrhythmia reversion with noninvasive nasal ventilation.\(^4,5\) We present a patient with both diseases, and in whom SAHS treatment with noninvasive nasal ventilation (continuous positive airway pressure [CPAP]) completely reversed sinus node dysfunction.

The patient was a 52-year-old man, smoker, hypertensive, and obese, with no other relevant history. He consulted his cardiologist for severe asthenia and a weight gain of about 15 kg in the past 6 months. The physical examination was normal, except for a body mass index of 39 and bradycardia of 54 bpm. The electrocardiogram (ECG) confirmed sinus bradycardia with a PR interval of 220 ms and right bundle-branch block. Holter monitoring was consistent with SND, with an average heart rate of 51 bpm (range, 31-86 bpm), an occasional run of self-limiting atrial tachycardia, and pauses of up to 5.7 s in the daytime and 7.4 s at night (Figure 1). The echocardiogram was strictly normal, except for mild diastolic dysfunction. The patient had brought a stress test,\(^214\) which was normal. The stress test was repeated after treatment of SAHS, and showed improvement in cardiac function.

The case we present is one of the few described in which a patient with dilated cardiomyopathy was treated with octreotide as an initial option, with improvement in cardiac dilation and ventricular function.

José J. Gómez-Barrado, Soledad Turégano, Gonzalo Marcos, and Yolanda Porras
Unidad de Cardiología, Hospital San Pedro de Alcántara, Cáceres, Spain