UPDATE: CARDIOVASCULAR PREVENTION (I)

Cardiovascular Risk Factors. Insights From Framingham Heart Study

Christopher J. O'Donnella,b and Roberto Elosuać,d

aNational Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA
bCardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
cUnidad de Lípidos y Epidemiología Cardiovascular, Instituto Municipal de Investigación Médica, IMIM-Hospital del Mar, Barcelona, Spain
dCIBER en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain

Epidemiology involves the study of disease frequency and its determinants within the population. Cardiovascular epidemiology began in the 1930s as a result of changes observed in the causes of death. In the 1950s, several epidemiological studies were set in motion with the aim of clarifying the cause of cardiovascular disease. Four years after the Framingham Heart Study started, researchers had identified high cholesterol and high blood pressure levels as important factors in the development of cardiovascular disease. In subsequent years, the Framingham study and other epidemiological studies have helped to identify other risk factors, which are now considered classical risk factors.

By coining the expression “risk factor”, the Framingham Heart Study helped to bring about a change in the way medicine is practiced. Today, a risk factor is defined as a measurable characteristic that is causally associated with increased disease frequency and that is a significant independent predictor of increased risk of presenting with the disease. This wide-ranging overview describes some of the most important insights into the causes of cardiovascular disease to have come from the Framingham Heart Study. The emphasis is on the identification of risk factors, and the assessment of their predictive ability and their implications for disease prevention.

Key words: Cardiovascular disease. Coronary heart disease. Epidemiology. Prevention. Risk factor.

INTRODUCTION

Epidemiology is the study of disease frequency and its determinants in the population. The term derives its meaning from the word epidemic, and in the first half of the last century the major epidemics were infectious.
disease outbreaks. With the discovery of antibiotics and the implementation of public health measures to control the spread of these diseases, mortality due to infections decreased and life expectancy increased. As a consequence of these changes a non-infectious group of diseases became the main individual cause of mortality: cardiovascular diseases. Around the middle of the last century cardiovascular disease mortality began to increase rapidly, but very little was known about its origins and causes.

Cardiovascular epidemiology began in the 1930’s as a consequence of observed changes in the causes of mortality. In 1932, Wilhelm Raab described the relationship between diet and coronary heart disease (CHD) in different regions, and in 1953 an association between cholesterol levels and CHD mortality was reported in various populations.

Several epidemiological studies were implemented in the 1950s to unravel the causes of cardiovascular disease (CVD). In 1948, the Framingham Heart Study was initiated by the USA Public Health Service to study the epidemiology and risk factors for CVD. That year, the National Institute of Health was expanded to encompass several institutes, each devoted to the study of particular diseases. The Framingham Heart Study was transferred to the National Heart Institute established in 1949, now known as the National Heart, Lung, and Blood Institute, and remains under its direction today. Since 1970 the Framingham Heart Study has also been closely affiliated with the Boston University. The town of Framingham, located 32 km west of Boston, Massachusetts, was selected because it had been the site of a successful community-based tuberculosis study undertaken in 1918, and because of its proximity to Boston’s major medical centers, the presence of several large employers and the support of a well-informed and highly cooperative medical and civil community.

The first cohort included 5209 healthy residents between 30 and 60 years of age enrolled in 1948 for biennial examinations which have continued since then. In 1971, 5124 sons and daughters (and their spouses) of the original cohort were recruited for the Offspring Study. Finally, in 2002, 4095 participants were included in the Third Generation cohort of the study. Some of the main findings and landmarks of the Framingham Heart Study are summarized in Figure 1.

In the 1950’s, individuals who developed CVD were considered to be unlucky. By coining the expression “risk factor,” the Framingham Heart Study helped to change the practice of medicine. Nowadays, we define a risk factor as a measurable element or characteristic that is causally associated with an increased rate of a disease and that is an independent and significant predictor of the risk of presenting a disease.

In this narrative review we will present some of the most relevant findings regarding the causes of CVD proceeding from the Framingham Heart Study, focusing on the identification of risk factors, the analysis of their predictive capacity, and the consequences of these findings for prevention.

THE JOURNEY TO IDENTIFY FACTORS ASSOCIATED WITH CARDIOVASCULAR DISEASE

Four years after the beginning of the Framingham Heart Study, with 34 cases of heart attack in the cohort, investigators identified high cholesterol and high blood pressure as important factors in the development of CVD. In the following years Framingham and other epidemiological studies contributed to the identification of other risk factors that are now considered to be classical risk factors for cardiovascular disease.

Cardiovascular risk factors can be classified in different ways. Figure 2 describes the relationship between the natural history of cardiovascular diseases and lifestyle and biochemical/physiological characteristics considered to be risk factors for these diseases, as well as subclinical disease markers.

Lipids

When epidemiological studies began, there were some prior evidence that suggested a relationship between total cholesterol and atherosclerosis based on animal studies and clinical observations. This association was confirmed by epidemiological studies showing a strong relation between serum total cholesterol and cardiovascular risk and that changes in cholesterol levels due to migration or interventions where associated with changes in CVD incidence rate. In light of these studies, clinicians and epidemiologists agreed that total plasma cholesterol was a useful marker for predicting CVD. These findings were confirmed when low density lipoprotein cholesterol (LDL-C), the principal lipoprotein transporting cholesterol in the blood was also directly associated with CVD. Moreover, LDL cholesterol levels in young adulthood predict development of CVD later in life, supporting the idea that the relationship between LDL-C and development of CVD should be viewed as a continuous process beginning early in life. Current guidelines identify LDL-C as the primary target for high blood cholesterol therapy. The efficacy of LDL-C lowering drug therapies to reduce CHD event rate and mortality has been shown in various clinical trials.

Regarding LDL-C and considering the data from observational and experimental studies, it has been estimated that the benefits of reducing serum cholesterol for CHD risk are age-related. A 10% reduction in serum cholesterol produces a drop in CHD risk of 50% at age 40, 40% at age 50, 30% at age 60, and 20% at age 70.
Figure 1. Summary of some of the main findings and landmarks of the Framingham Heart Study. ADL-C indicates high density lipoprotein cholesterol.

Figure 2. Natural history of cardiovascular diseases and its correspondence with some lifestyle and biochemical/physiological characteristics considered risk factors for these diseases. CRP indicates C-reactive protein; CVD, cardiovascular disease; HDL-C, high density lipoprotein cholesterol; IMT, intimal medial thickness; LDL-C, low density lipoprotein cholesterol.
Meanwhile, other studies were beginning to highlight the fact that individuals with high HDL levels were less likely to present CHD than individuals with low HDL levels.20,26 It was only after the publication of results from the Cooperative Lipoprotein Study27 and the Framingham Heart Study28 that HDL-C was accepted as an important factor related to atherosclerosis. Consequently, raising HDL cholesterol (HDL-C) levels has become an accepted therapeutic strategy for decreasing CHD incidence rate. Although there are some drugs, such as fibrates, niacin, and torcetrapib, a cholesteryl ester-transfer protein inhibitor, that have been shown to be effective in increasing HDL-C29,30 only fibrates have been shown to reduce risk of major coronary events; torcetrapib has in fact been shown to increase blood pressure and risk of mortality and morbidity through an unknown mechanism.31 It is estimated that a 1 mg/dL increase in HDL level is associated with a decrease in coronary risk of 2\% in men and 3\% in women.30

The role of triglycerides as an independent risk factor for CHD has been always controversial and, although some consistent evidence has been put forward, there are some doubts about the independent nature of this relationship.34 In Spain the prevalence of hypercholesterolemia is also high, and it is estimated that 23\% of the adult population presents total cholesterol higher than 250 mg/dL.35 In Figure 3 we show the trends in the proportion of the population of Girona with total cholesterol, LDL-C, and HDL-C greater or lower than various thresholds during the last 10 years.36

Hypertension

In 1948 it was thought that high blood pressure was necessary to force blood through the stiffened arteries of older persons and that it was a normal element of aging, therefore it was considered appropriate to ignore labile and systolic elevations of blood pressure37 and isolated systolic hypertension was rarely considered seriously.38 Framingham researchers dispelled these myths and reported that blood pressure was directly associated with cardiovascular risk regardless of how labile it was.39 Moreover, it was reported that isolated systolic hypertension was also a powerful predictor of cardiovascular disease.40 More importantly, Framingham and other epidemiological studies, demonstrated that systolic and diastolic blood pressure has a continuous, independent, graded, and positive association with cardiovascular outcomes.41-44 Even high-normal blood pressure values are associated with an increased risk of cardiovascular disease.45 In light of these studies, the Joint National Committee VII report developed a new classification of blood pressure for adults aged 18 years or older,46 including a new category called prehypertension, since
these individuals are at increased risk of progression to hypertension and show an independent increased in risk of cardiovascular disease. For individuals aged 40 to 70 years, each increment of 20 mm Hg in systolic blood pressure or 10 mm Hg in diastolic blood pressure doubles the risk of CVD across the entire range of blood pressure from 115/75 to 185/115 mm Hg.47 In clinical trials, antihypertensive therapy has been associated with a 35% to 40% reduction in stroke incidence; 20% to 25% in myocardial infarction; and more than 50% in heart failure.48

In Spain the prevalence of hypertension is high, and it is estimated to be around 34% in the adult population.35 In the population of Girona, the trends in awareness, treatment, and control have improved in the last 10 years although the proportion of controlled hypertension is still far from ideal (Figure 4).36

Smoking

Before Framingham, smoking was not accepted as a bona fide cause of heart disease; even the American Heart Association issued a report in 1956 stating that the available evidence was insufficient to conclude that there was a causative relationship between cigarette smoking and CHD of incidence.49 The Framingham Study along with the Albany Cardiovascular Health Center Study soon demonstrated that smokers were at increased risk of myocardial infarction or sudden death.50 Moreover, risk was related to the number of cigarettes smoked each day, and former smokers had similar CHD morbidity and mortality to those who never smoked.50 These results were confirmed by other epidemiological studies,51-53 placing smoking as a high priority on the preventive agenda.

In Spain the prevalence of smoking is very high, and although it has decreased slightly in men, it has increased in women in the last decade (Figure 5).36

Diabetes

Diabetes is associated with a 2- to 3-fold increase in the likelihood of developing CVD,54 this increase being higher in women than in men55; glucose intolerance is also associated with a 1.5-fold increase in the risk of developing cardiovascular disease.56 Moreover, diabetes is also associated with a higher probability of presenting with hypertriglyceridemia, low

Figure 4. Trends in the prevalence, awareness, treatment, and control of hypertension in the population of Girona in the last 10 years. A indicates men; B, women.
HDL-C, high blood pressure, and obesity, which usually precede the onset of diabetes. Insulin resistance has been suggested to be a common mechanism for these risk factors, the association of which is referred to as the metabolic syndrome, but there are still some doubts about the common mechanism and the added value of this diagnosis instead of the individual diagnosis of each component.

In Spain, the prevalence of diabetes is 8% in women and 12% in men and seems to be stable, although the increase in the prevalence of obesity in this population may result in an increase in diabetes prevalence.

Physical Inactivity

Since the first study of Morris et al published in 1953, a number of epidemiological studies have confirmed an association between physical inactivity and CHD. The relative risk of death from CHD for sedentary compared with active individuals is 1.9 (95% confidence interval 1.6-2.2). A recent study concluded that differences in known risk factors explain a large proportion (59.0%) of the inverse association between physical activity and CHD. Inflammatory/haemostatic biomarkers made the largest contribution to lower risk (32.6%), followed by blood pressure (27.1%), body mass index (10.1%), and hemoglobin A1c/diabetes (8.9%). The recommendation of physical exercise has become an important element of preventative policies in adults, elderly, and children.

Obesity

Obesity is a chronic metabolic disorder associated with numerous comorbidities such as CHD, CVD, type 2 diabetes, hypertension, certain cancers, and sleep apnea. Obesity is also an independent risk factor for all-cause mortality, a relationship identified by Framingham investigators 40 years ago. In addition to alterations in metabolic profile, various adaptations in cardiac structure and function occur as excess adipose tissue accumulates. Similar to data observed with LDL-C and supporting the idea that the progression of atherosclerosis should be viewed as a continuous process beginning early in life, a recent study reported that higher BMI during childhood is associated with an increased risk of CHD in adulthood. This association seems to be stronger in boys than in girls and increases with the age of the child in both sexes.

The prevention and control of overweight and obesity in adults and children has become a key element for the prevention of cardiovascular diseases.

Novel Risk Factors

Although the misleading idea that the 4 major modifiable traditional cardiovascular risk factors—smoking, diabetes mellitus, hypertension, and hypercholesterolemia—account for “only 50%” of individuals who go on to develop CHD is widespread, major risk factor exposures are very common (>80%)

Figure 5. Trends in the prevalence of smoking in the population of Girona in the last 10 years.
among those who developed CHD81,82 and explain
approximately 75\% of the incidence of CHD,83
emphasizing the importance of considering all major risk
factors when estimating CHD risk and when attempting
to prevent clinical CHD.

Nonetheless, research on non-traditional risk factors
and genetic causes of heart disease is important to
discovering new pathways related to atherosclerosis.84
In future articles of this series various authors will review
specific aspects of these novel risk factors.

**ASSESSMENT OF THE PREDICTIVE
CAPACITY OF RISK FACTORS**

Chronic diseases such as CVD are the result of complex
interactions between genetic and environmental factors
over extended periods of time. In this section we will
analyze the ability of risk factors to predict future CVD
events.

One of the contributions of Framingham investigators
was to develop new multivariate statistical methods to
analyze the development of complex disease.85 These
methods allow us to estimate individual risk according
to the level of exposure to different risk factors included
in a mathematical function. Estimation of CHD and other
vascular events is a dynamic field and various functions
have been proposed and developed by Framingham investigators.86-88 The most recent function
was published in 1998 and develops a simplified coronary
prediction model, using the blood pressure, cholesterol,
and LDL-C categories proposed by the JNC-V and NCEP
ATP II.88 One of the concerns related to the use of the
Framingham risk function has been its generalizability
to other communities, since it is based on the experience
of the Framingham Study, a community sample of white
subjects drawn from a suburb west of Boston. However,
reasonable accuracy in predicting CHD has been
demonstrated in various populations from the United
States, Australia, and New Zealand, and although it
overestimates the absolute risk in China and European
populations,89 after recalibration for differing prevalences
of risk factors and underlying rates of CHD events, it can
be applied in different populations90 including the Spanish
population.91,92

The accuracy of a risk function reflects on both the
ability to distinguish individuals who will and will not
develop the disease (discrimination), and the close
matching of predicted and observed probabilities
(calibration).

Discrimination is the ability of a prediction model to
separate those who experience a CHD event from those
who do not. It is usually quantified by calculating the \(c \)
statistic, analogous to the area under a receiver operating
characteristic (ROC) curve; this value is an estimate of
the probability that a model assigns a higher risk to those
who develop CHD within a 5-year follow-up period than
to those who do not.90

Calibration measures how closely predicted
probabilities of CHD agree with actual outcomes. Calibration is evaluated by using a measure that
summarizes how closely the predicted and observed risks
agree within each decile of predicted risk (Hosmer–Lemeshow statistic). As mentioned above,
when the risk function is used in populations with a
probability of disease or a prevalence of risk factors that
is very different from the population in which the risk
function was developed, the function must be recalibrated
to maintain its accuracy.90 At this point, it is important
to note that although the incidence of CHD varies among
populations, the relative risk associated with the level of
exposure to the various risk factors is homogeneous across
populations.93,94

The selection of risk factors to be included in a risk
prediction equation is usually controversial, and involves
the availability of methods to measure risk factors, the
costs of those measurements, and general considerations
of parsimony, and accuracy of the equation. Once the
risk prediction equation is validated, however, the key
question is how much the addition of a new risk factor
improves prediction. The change in \(c \)-statistic, as a
measure of the discrimination ability, provides one
indication of that improvement.

Although various new risk factors have been shown
to be associated with CHD they have failed to significantly
improve the discriminatory capacity of the classical
Framingham risk function, even with a magnitude of
association (measured as a odds ratio or hazard ratio)
greater than 3.95,96 The reason for this failure can be
explained by the overlap in the distributions of the risk
factor between individuals with the disease and healthy
individuals (Figure 6), which limits any improvement in
the sensitivity and specificity of the predictive risk
function.97 Similar difficulties in improving the
discriminatory capacity of risk functions have been
reported when using imaging techniques, such as carotid
intima-media thickness or coronary calcium.98-100 More
research remains to be done before new biomarkers can
provide a basis for risk prediction at the individual level
and to define the subset of individuals in which these
biomarkers could add additional, complementary
information.

IMPLICATIONS FOR PREVENTION

At the time when the first results of epidemiological
studies were emerging, opinions on the need to detect
and treat asymptomatic risk factors, such as hypertension
or hypercholesterolemia differed.101 However, the first
results of the Framingham Heart Study revealed that
much of the premature mortality due to CHD and stroke
occurred in individuals generally prone to
atherosclerosis, and in the context of identified risk
factors presenting well in advance of the clinical
symptoms.102 These observations resulted a paradigm
Figure 6. Overlapping in the risk factor distribution between individuals
with the disease and healthy individuals that explain the high proportion
of false positive and negative individuals when using cardiovascular risk
functions to predict cardiovascular events.

change in perception of the causes of cardiovascular
disease and encouraged physicians to place a greater
emphasis on prevention, as well as on detecting and
treating risk factors, and also to help individuals to
understand that they could personally reduce their risk
for heart disease. As Dr W. B. Kannel, a former chief
investigator in the Framingham Heart Study, stated,
“Cardiovascular events are coming to be regarded as a
medical failure rather than the first indication of
treatment.”103 Sixty years after the beginning of the
study, cardiovascular diseases remain the leading cause
of global mortality and the morbidity related to these
diseases is also high in Spain.104,105 However, some
recent data indicates that incidence rates decreased in
men aged 35-64 years during the period 1990-1999, but
not in those aged 65-74 years, suggesting that
preventative measures have increased the age at which
a myocardial infarction or its recurrence is observed in
men; no incidence rate changes were observed in
women.106

Current guidelines provide advice on screening and
identifying asymptomatic individuals at risk of developing
CVD. The objectives of these guidelines are to reduce the
incidence of first or recurrent clinical events due to
coronary heart disease, ischemic stroke, and peripheral
artery disease. The focus is on prevention of disability
and early death. To this end, the current guidelines address
the role of lifestyle changes, the management of major
cardiovascular risk factors and the use of different
prophylactic drug therapies in the prevention of clinical
CVD. The first step in this process is the calculation of
individual cardiovascular risk according to risk factor
exposure.24,107-110 Recent surveys indicate that guidelines
awareness and acceptance is high, although
implementation could be much improved.111-112 However,
differences persist in the various guidelines regarding
the methods of cardiovascular risk calculation, definitions
of risk threshold, and definitions of who should be
treated,113,114 causing confusion among clinicians, and
this could be an important reason for failure in
implementation of these guidelines in clinical practice.

On the other hand, we do not have to consider
cardiovascular risk functions as diagnostic test because
their sensitivity and specificity is low (Figure 6).114 These
risk functions are screening test that help us to rationalize
the selection of patients to implement different possible
primary prevention strategies and their intensity.

Considering that cardiovascular diseases continue to
be the leading cause of mortality in industrialized
countries, more effort is required to reduce the burden
of these diseases. In this context, lifestyle modifications
based on avoiding smoking, taking regular physical
exercise, and improving control of hypertension could
be the most effective intervention at the population level.
In Spain, it has been estimated that avoiding smoking
and promoting physical activity could reduce the number
or coronary heart disease deaths by 20% and 18%
respectively115; controlling hypertension could reduce
the number of cerebrovascular disease deaths by around
20%–25%.115

REFERENCES

1. Last JM. A dictionary of epidemiology. 3.a ed. New York: Oxford
University Press; 1995.
2. Fleming A. Twentieth-century changes in the treatment of septic
3. Paneth N. Assessing the contributions of John Snow to
epidemiology: 150 years after removal of the broad street pump
4. Raab W. Alimentäre fakten in der entstehung von arteriosklerose
Mt Sinai Hosp. 1953;20:118-39.
6. Doyle JT, Helsin SA, Hilleboe HE, Formel PF, Koras RF. A
prospective study of cardiovascular disease in Albany: report of
three years’ experience: ischemic heart disease. Am J Public
Measuring the risk of coronary heart disease in adult population
groups, IV: clinical status of a population group in Los Angeles
1957;47:33-42.
8. Dawber TR, Moore FE, Mann GV. Coronary heart disease in
Simonson E. Coronary heart disease among Minnesota business
and professional men followed 15 years. Circulation. 1963;28:
381-95.
10. The Pooling Project Research Group. Relationship of blood
pressure, serum cholesterol, smoking habit, relative weight and
ECG abnormalities to the incidence of major coronary events:
final report of the pooling Project. J Chronic Dis. 1978;31:
201-306.

