Letters to the Editor

Iatrogenic Coronary-Cameral Fistula After Percutaneous Intervention on the Right Coronary Artery

To the Editor:

We present the case of a 42-year-old man admitted to our hospital for non-Q-wave acute myocardial infarction. Following treatment with aspirin plus clopidogrel, enoxaparin, atenolol, and nitroglycerin, early elective coronary angiography was performed and a severe, long, irregular stenotic lesion was found in the middle segment of the right coronary artery. Because of the anticipated difficulty for crossing the lesion, a hydrophilic angioplasty guidewire (PT Graphix, Boston Scientific, United States) was chosen. Direct implantation of a sirolimus-eluting stent (Cypher, Cordis Inc, United States) was tried; however, when attempting to cross the lesion with the device, the guidewire was displaced toward the ascending aorta, dragging along the guide catheter, which had to be advanced toward the septal branch of the posterior interventricular artery. A 3×24-mm stent was then implanted in the middle segment by inflation at 13 atmospheres for 30 seconds. Following withdrawal of the guidewire, a fistula appeared between the septal branch and the right ventricle (Figure 1). There were no hemodynamic symptoms or abnormalities. The patient progressed satisfactorily during the hospitalization. Echocardiography identified and located the fistulous tract (Figure 2), which was draining into the right ventricle at a rate of 3 m/s. No evidence of volumetric overload of the right chambers was observed and repeated measures of Qp/Qs were around 1.1. Therefore, the patient was discharged home with conventional treatment.

The 2-month follow-up showed complete and spontaneous closure of the fistula.

The complication described herein is a problem observed rarely, but not exceptionally, after insertion of hydrophilic guidewires.1 Perforation of the epicardial coronary arteries occurs generally toward the pericardial sac,2 with the consequential risk of cardiac tamponade that requires immediate treatment.3 In this case, drainage to a ventricular chamber and the intramyocardial path of the culprit artery are factors that decreased the patient’s risk of acute hemodynamic instability. The potential late complications of this situation include progression of left-to-right shunting, pulmonary hypertension, high output heart failure, and distal ischemia in the artery affected by steal phenomenon.

Closure has been recommended for large fistulae with hemodynamic abnormalities, whether by surgery (which

Figure 1. Right and left anterior oblique angiographic views that show extravasation of contrast material from the septal artery arising from the posterior interventricular artery toward the right ventricular chamber.

Figure 2. Modified (left) longitudinal apical echocardiographic view in which color Doppler reveals a section of the posterior interventricular artery and septal artery with accelerated flow and the communication with the right ventricular chamber. Transverse (right) parasternal view shows the site of the defect at the junction of the inferior septum and the right ventricular free wall.
usually requires extracorporeal circulation, percutaneous embolization with coils, or closure of the native artery by stents of impermeable material. Conversely, small fistulae tend to follow a benign course.

The appropriate treatment for this problem has still not been established and should be individualized according to severity. In this case, clinical and echocardiographic observation was chosen, and spontaneous resolution was confirmed.

Alejandro Diego-Nieto, Carlos Cuellas-Ramón, Armando Pérez de Prado, and Felipe Fernández-Vázquez

Sección de Hemodinámica y Cardiología Intervencionista, Servicio de Cardiología, Hospital de León, León, Spain

REFERENCES

Letters to the Editor

To the Editor:

During the summer of 2006, we climbed the Galician section of El Camino de Santiago (“Route of Santiago”) together with 21 low-risk coronary patients and their partners, using this legendary goal to encourage these patients to undertake a rehabilitation program in a leisure setting and as a physical and psychological challenge. The basic idea of the initial experience was to explore the safety, accessibility, and possibilities of the program.

Twenty-one patients who met the conditions required by the Preventive Cardiology and Rehabilitation Section of the Sociedad Española de Cardiología (Spanish Society of Cardiology) for low-risk patients signed the consent form. All participants (patients and partners) were advised to undertake a walking program 2 months before the starting date. This program included 5 kilometers a day during the first month and 10 kilometers in the second, as well as determinations of blood sugar, lipids, blood pressure, and weight before and after the event (Table 1). All individuals completed 4 surveys to assess their psychological profile, knowledge of disease, risk factors, and heart-healthy lifestyle habits, as well as their use of the various food groups. The data obtained were then used in a series of discussion talks held to enhance the patients’ knowledge in these areas.

For safety and support purposes, we had a physician and 2 nurses, a logistic support car, and another medical care vehicle to carry medication, cardiac arrest equipment, a defibrillator and oxygen cylinder, and finally, a bus to connect the starting and ending points for the different stages with a hotel located in Sarria, where the discussion talks were held.

The following route was taken (Figure 1):

– Stage 1. O’Cebreiro-Triacastela. We skipped the first 8.5 kilometers to avoid 2 climbs without a warm-up that ended at the Poio summit (altitude, 1280 m above sea level). From there, we walked 12.5 kilometers, initially on flat ground, followed by a descent to Triacastela (660 m above sea level).

TABLE 1. Population Characteristics and Surgical Results

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>25.2</td>
<td>23.4</td>
</tr>
<tr>
<td>EF</td>
<td>60%</td>
<td>55%</td>
</tr>
<tr>
<td>HT</td>
<td>40%</td>
<td>30%</td>
</tr>
<tr>
<td>LDL-C</td>
<td>100 mg/dL</td>
<td>120 mg/dL</td>
</tr>
<tr>
<td>ST</td>
<td>Normal</td>
<td>Positive</td>
</tr>
</tbody>
</table>

A. Lopez-Campos, M. C. Gonzalez-Arias, J. M. M. Martinez-Martinez, J. del Hoyo, J. A. Garcia-Cabezudo, and A. A. Gonzalez-Velasco

Sección de Hemodinámica y Cardiología Intervencionista, Servicio de Cardiología, Hospital de León, León, Spain