Lack of physical activity in the general population is a public health problem and is recognized as an independent risk factor for the development of coronary disease. The relative risk of inactivity is similar to that of hypertension, hypercholesterolemia, and smoking. Consequently, a sedentary lifestyle is associated with a concurrent increase in cardiovascular disease. Engaging regularly in mild-to-moderate physical exercise results in a range of physiological adaptations that are beneficial for health. Various studies have demonstrated that there is an inverse relationship between regular exercise and the risk of coronary heart disease, cardiac events, and death. Exercise improves the lipid profile and glycemic control, reduces or prevents hypertension, obesity, and stress, and promotes fitness and longevity. However, most evidence for the benefits of exercise comes from observational studies and, although maximum oxygen uptake and the duration of exercise on an exercise stress test are powerful predictors of mortality, there is no agreement on the quantity or intensity of the physical activity needed for primary or secondary prevention. On the other hand, although there is a temporarily increased risk of acute myocardial infarction during exhaustive exercise, the balance of risks and benefits is strongly in favor of the benefits because there is a minimum threshold for the weekly energy expenditure required to reduce cardiovascular risk.

Key words: Exercise. Risks and benefits. Cardiovascular disease prevention.

INTRODUCTION

The relationship between exercise and its health benefits is well known. Nevertheless, the lack of physical activity continues to be a public health problem. The reduction in physical work has compromised physical fitness, and this change toward a more sedentary lifestyle is detrimental to the individual and potentially costly for society, as it has been accompanied by a simultaneous increase in the number of cases of cardiovascular disease. Humans, like animals, reduce their physical activity as they age and, in modern society, the level of voluntary physical activity declines as soon as maturity is reached. If the importance of exercise in the maintenance of cardiovascular and muscle health is taken into account, it is not surprising that the functional capacity and tolerance for physical exertion deteriorates in inactive adults.
On the other hand, there is sufficient information in the medical literature demonstrating the beneficial effects of physical activity on health and longevity. When exercise forms part of our occupational and recreational activities, it is beneficial in terms of preventing ischemic heart disease, decreasing overall mortality and improving quality of life. Thus, exercise plays an important role in the prevention of numerous conditions and is of great utility in delaying the negative effects of aging on the cardiovascular system.

PHYSICAL EXERCISE AND SPORTS

Physical activity and exercise are not interchangeable terms, although, with certain frequency, they are employed without distinction, and physical exercise and sports are even utilized as synonyms. Physical activity is any body movement produced by the skeletal muscles that results in energy expenditure. Physical exercise is a different concept, since it is a type of physical activity that is planned, structured and repetitive, and is performed for the purpose of maintaining or improving one or more fitness components. Physical aptitude or fitness is understood to be the capacity to perform mild to moderate physical activity without experiencing excessive fatigue. The concept of physical fitness includes different variables of cardiovascular fitness, respiratory fitness, body composition, muscle strength and elasticity, and flexibility. Sports involve organized matches, requiring physical exertion, that abide by an established structure and are coordinated within a context of formal and explicit rules and regulations with respect to behaviors and procedures. Sports are physical and intellectual activities that have a competitive component that involves spectacle and physical training.

Sports differ widely from one to another, as do the factors that define each specialty. On the basis of their bioenergetic characteristics, sports are classified as: (a) aerobic, in which exercises of long duration and mild to moderate intensity predominate and in which oxygen delivery is fundamental in order to obtain energy (for example, a marathon); (b) alactic anaerobic, which are exercises of short duration and very high intensity, in which the energy supply is provided by adenosine triphosphate (ATP) and phosphocreatine (for example, 50 and 60-meter track events); (c) lactic anaerobic, involving exercises of short duration and high intensity (for example, 400-meter track events); and (d) mixed, that is, aerobic-anaerobic (for example, soccer, basketball, and volleyball). Thus, the comparison of the effects of different sports can prove to be truly difficult, since the metabolic changes vary according to the predominant energy pathway, which, in turn, can differ depending on whether we are talking about training or a competition.

TYPES OF PHYSICAL EXERCISE

The contractile phenomenon is a process that requires energy, and ATP is the only immediate source of energy for muscle contraction. Skeletal muscle utilizes 3 sources of energy for its contraction: the alactic anaerobic system (involved in high-intensity activities that take less than 15 to 30 seconds), the lactic anaerobic system or anaerobic glycolysis (exercises of maximum intensity and a duration of 30 to 90 seconds) and the aerobic or oxidative system (predominant energy source for approximately 2 minutes of exercise).

The organism obtains energy from the utilization of energy substrates (mainly carbohydrates and fats), with or without the participation of oxygen (aerobic and anaerobic metabolic pathways, respectively). The aerobic pathway results in the highest yield for the organism (greater ATP production per unit of substrate) and end products that do not produce fatigue, and is the most important metabolic pathway in exercises of long duration. Its limitation can be found at any point of the system that transports oxygen from the atmosphere until it is utilized in the peripheral mitochondria. It must be taken into account that these 3 energy systems overlap. Thus, the energy pathway predominantly utilized in a physical activity depends on its intensity and duration. Factors that determine the utilization of the energy substrates are the intensity of the exercise (the higher the intensity, the greater the contribution of carbohydrates to energy production), its duration (the longer the duration, the greater contribution of fats), the amounts of carbohydrates prior to exercise and the physical fitness of the individual. Figure 1 shows how, from a certain exercise intensity on, lactic anaerobic metabolism plays a greater role in energy production, despite the fact that aerobic metabolism continues to contribute to the energy supply. It should be pointed out that, when vigorous exercise that surpasses the anaerobic threshold is performed, the maximum concentration of lactate in blood is reached once exercise is discontinued as clearance of the high lactic acid concentration accumulated in muscle takes time.

The intensity of exercise can be expressed in terms relative to the functional capacity of each individual, as a percentage of the maximum oxygen consumption ($\text{VO}_{2\text{max}}$) or in metabolic equivalents (MET). The $\text{VO}_{2\text{max}}$ indicates the physical work capacity of an individual and reflects, in a general way, the system that transports oxygen from the atmosphere until it is utilized in muscle. The exercise intensity at which the respiratory efficiency is greatest, and at which the energy supply is provided predominantly by aerobic metabolism, corresponds to the aerobic threshold. The effort intensity beyond which the anaerobic metabolism increases substantially and is not compensated for or assimilated by the organism and, thus, fatigue develops, corresponds to the anaerobic threshold. In trained individuals, the physical exertion required for fatigue to develop is greater, indicating that...
these individuals are capable of performing more vigorous exercise without tiring. Figure 2 shows that vigorous exercise of approximately 1 minute requires the participation of lactic anaerobic metabolism. It can be observed that, when vigorous exercise is repeated without allowing sufficient recovery time, lactate builds up in the bloodstream due to a lack of time for the clearance of the high lactic acid concentration accumulated in muscle. Figure 3 shows that, with physical exercise under conditions of metabolic stability, at or under the anaerobic threshold, the blood lactate levels remain constant, even following intense anaerobic exertion.

Depending on the type of muscle contraction, physical exercise is classified as dynamic, or isotonic, or static, or isometric. Dynamic exercise is that in which there is successive contraction and relaxation of the muscle fibers, for example, in running or swimming. Given the characteristics of these activities, they are usually referred to as “aerobic.” Static or isometric exercise is understood to be that in which stress is generated in the muscle fibers, without important changes in muscle length (the most characteristic example is maintaining the position during weight lifting). In general, it involves vigorous exercise, and is usually not very prolonged. As oxygen consumption is low, this type of exercise is predominantly “anaerobic.” In reality, in most types of exercise, the muscle activity is mixed and their classification is based on the predominant type of contraction.

Physical activities can be performed at different degrees of intensity and, thus, the energy expenditure
changes according to the intensity and duration of the activity. Moderate physical fitness enables the individual to perform activities that require an energy expenditure of around 150 kcal/day, which corresponds to activities of an intensity of between 3 and 6 MET. These include, for example, brisk walking (4.8 to 6.4 km/hour), cycling at 13 km/hour, moderate-effort swimming, golf, lawn mowing, or housecleaning.5 Table 1 provides examples of physical activities of daily living that result in an expenditure of around 150 kcal/day or 1000 kcal/week for an adult male weighing approximately 70 kg. Since these activities can be performed at different intensities, there is an inverse relationship between the duration and the intensity of the exertion. Table 2 shows the time required to achieve an energy expenditure of 150 kcal in different sports, according to the body weight of the individual, the type of activity, and its intensity.

Table 1. Activities of Daily Living of Moderate Intensity (3-6 MET)

<table>
<thead>
<tr>
<th>Activities of daily living</th>
<th>Time, min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning windows and floors</td>
<td>45-60</td>
</tr>
<tr>
<td>Washing and waxing the car</td>
<td>45-60</td>
</tr>
<tr>
<td>Yard work</td>
<td>30-45</td>
</tr>
<tr>
<td>Manual wheelchair propulsion</td>
<td>30-40</td>
</tr>
<tr>
<td>Walking at 4.8 km/h</td>
<td>35</td>
</tr>
<tr>
<td>Raking leaves</td>
<td>30</td>
</tr>
<tr>
<td>Pushing a baby carriage</td>
<td>30</td>
</tr>
<tr>
<td>Walking at 6.4 km/h</td>
<td>30</td>
</tr>
<tr>
<td>Climbing stairs</td>
<td>15</td>
</tr>
<tr>
<td>Shoveling snow</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moderate-intensity exercise</th>
<th>Time, min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kicking around a soccer ball</td>
<td>30-45</td>
</tr>
<tr>
<td>Basketball shooting</td>
<td>30</td>
</tr>
<tr>
<td>Ballroom dancing</td>
<td>30</td>
</tr>
<tr>
<td>Water aerobics</td>
<td>30</td>
</tr>
<tr>
<td>Running at 9.6 km/h</td>
<td>15</td>
</tr>
<tr>
<td>Jumping rope</td>
<td>15</td>
</tr>
</tbody>
</table>

Activities that result in an energy expenditure of approximately 150 kcal/day or 1000 kcal/week for an adult male weighing approximately 70 kg. It can be seen that the more vigorous the activity, the shorter the time required to achieve the target caloric expenditure.

Figure 3. Blood lactate concentration in an elite Spanish male long-distance runner during a field test to confirm the anaerobic threshold. Blood lactate determinations were performed 30 seconds after the 600-meter set and the two 3000-meter sets, as well as 30 seconds after the 4000-meter set and 3, 5, 7, 10, and 20 minutes into recovery. It can be observed that, in contrast to Figures 1 and 2, that at this exercise intensity, below the anaerobic threshold, blood lactate levels decrease after exercise cessation. Courtesy of Dr Manuel Rabadán (Centro de Medicina del Deporte, Consejo Superior de Deporte, Madrid, Spain).

Table 2. Time required to achieve an energy expenditure of 150 kcal in different sports, according to the body weight of the individual, the type of activity, and its intensity.

<table>
<thead>
<tr>
<th>Activities of daily living</th>
<th>Time, min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning windows and floors</td>
<td>45-60</td>
</tr>
<tr>
<td>Washing and waxing the car</td>
<td>45-60</td>
</tr>
<tr>
<td>Yard work</td>
<td>30-45</td>
</tr>
<tr>
<td>Manual wheelchair propulsion</td>
<td>30-40</td>
</tr>
<tr>
<td>Walking at 4.8 km/h</td>
<td>35</td>
</tr>
<tr>
<td>Raking leaves</td>
<td>30</td>
</tr>
<tr>
<td>Pushing a baby carriage</td>
<td>30</td>
</tr>
<tr>
<td>Walking at 6.4 km/h</td>
<td>30</td>
</tr>
<tr>
<td>Climbing stairs</td>
<td>15</td>
</tr>
<tr>
<td>Shoveling snow</td>
<td>15</td>
</tr>
</tbody>
</table>

BENEFITS OF EXERCISE

Aerobic physical activity, that is, of long duration, mild to moderate intensity (individualized) and performed regularly, produces a series of adaptations of differing nature (muscular, osseous, metabolic, respiratory, and cardiovascular) that produce the health benefits. The training associated with sports predominantly involving dynamic exercise and endurance induces morphological and functional cardiovascular adaptations: reduced heart rate and increases in chamber volume, wall thickness, systolic volume, myocardial capillary density (number of capillaries per myofibril), and the dilatory capacity.6 Studies carried out in athletes from different specialties support the concept of a single type of hypertrophy, and have revealed that those involved in sports requiring endurance exhibited a greater increase in left ventricular mass than those in sports requiring strength.7,8

A number of studies performed both in animals and in humans have reported adaptations of the coronary arteries related to the physiological hypertrophy. Structural and metabolic adaptations, increased capillary density proportional to the myocardial wall thickening, increase in the lumen of the coronary vessels, especially in their vasodilatory capacity, and increase in capillary permeability have been observed.6,9,10 All these changes play a role in maintaining adequate myocardial perfusion during physical exercise in order to facilitate blood flow to the cardiac muscle. In patients with coronary artery
Revised study involving individuals who engage regularly in sports. However, observational studies indicate that among women, in whom life is prolonged by 1.5 and 3.7 years, respectively, as compared with low-intensity activity, and similar results are observed in women, in whom life is prolonged by 1.5 and 3.7 years, respectively. However, another study carried out in a population of 302 active volunteers (aged, 70 to 82 years) supports the idea that the daily energy expenditure, measured by means of a metabolic study with radiolabeled water, correlates better with the benefit in terms of mortality than the level of intensity of the physical activity performed.

With respect to its effects on the cardiovascular system, different studies have demonstrated an inverse relationship between regular exercise and the risk of coronary artery disease, cardiac events, and death. Exercise has beneficial effects on the lipid profile (reduction of low-density lipoproteins and triglycerides, increase in high-density lipoproteins) and on body composition, the aerobic capacity and hemostasis, thus reducing the risk of thrombosis. Exercise improves glycemic control and insulin sensitivity, and prevents the development of type 2 diabetes mellitus in high-risk patients.

Exercise offers a number of benefits, and a number of studies have demonstrated that it reduces or prevents obesity, delays weight gain after smoking cessation, reduces the risk of gallstone disease, and even has a modest protective effect against cancer. In elderly individuals, it improves their functional status and their autonomy, prevents or delays cognitive deterioration and decreases the incidence of Alzheimer’s disease.
TABLA 3. Beneficial Effects of Exercise

- **Antithrombotic effects**
 - Reduces the risk of cardiovascular disease and strokes
 - Aids in stress management
 - Helps induce sleep and improves its quality
 - Helps to combat anxiety and depression and generates enthusiasm and optimism
 - Improves one’s self-image

- **Effects on quality of life and survival**
 - Reduces risk of certain types of cancer (breast, prostate, colon)
 - Prevents bone loss (improved bone growth and calcium retention)
 - Helps to establish habits that promote cardiovascular health in children
 - Reduces medical costs
 - Reduces the risk of death and increases longevity
 - Improves digestion and bowel regularity
 - Prevents bone loss (improved bone growth and calcium retention)
 - Helps to establish habits that promote cardiovascular health in children
 - Reduces medical costs

- **Improves muscle strength and resistance, thus increasing the capacity to perform other physical activities of daily living**

- **In older individuals, it helps to delay or prevent chronic diseases and those associated with aging**

- **Reduces the risk of death and increases longevity**

- **Improves one’s self-image**

- **Other effects**
 - Reduces the risk of certain types of cancer (breast, prostate, colon)
 - Prevents bone loss (improved bone growth and calcium retention)

- **Improves digestion and bowel regularity**

- **Aids in stress management**

- **Helps induce sleep and improves its quality**

- **Helps to combat anxiety and depression and generates enthusiasm and optimism**

- **Improves one’s self-image**

- **Reduces medical costs**

- **Enhances blood flow and fibrinolytic activity**

- **Increases insulin sensitivity and glucose utilization, thus reducing the risk of noninsulin-dependent diabetes mellitus**

- **Improves the lipid profile: decreases low-density lipoprotein cholesterol, and triglycerides; increases high-density lipoprotein cholesterol**

- **Increases body fat utilization and helps to control weight**

- **Antithrombotic effects**
 - Enhances blood flow and fibrinolytic activity
 - Reduces the risk of cardiovascular disease and strokes
 - Aids in stress management
 - Helps induce sleep and improves its quality
 - Helps to combat anxiety and depression and generates enthusiasm and optimism
 - Improves one’s self-image

RISKS OF EXERCISE

In addition to bone and muscle injuries, physical exercise has other adverse effects, some involving cardiovascular conditions, such as arrhythmias, sudden cardiac death, or myocardial infarction, and others associated with muscle conditions, such as rhabdomyolysis. There is a transient increase in the risk of sudden cardiac death during the performance of vigorous exercise, even in healthy men; however, the absolute risk during a given exercise session is very low, with 1 death for every 36.5 million hours of exercise, resulting in a RR of 2.38 (95% CI, 1.23-4.6; P=.01). In this population, the total risk was extremely low, with 1 death for every 36.5 million hours of exercise, and, as in men, regular moderate or vigorous exercise had a protective effect (RR=0.41 in women who exercised for 4 hours a week or more, as compared to sedentary women).

The mechanisms postulated for sudden death during exercise include arrhythmias, especially tachycardia or ventricular fibrillation, and acute coronary ischemia secondary to plaque rupture, and coronary thrombosis. Coronary spasm has also been reported to be a causal mechanism in diseased coronary arteries. However, regular moderate or vigorous exercise has an attenuating effect on the risk of atrial and ventricular arrhythmias during a session of vigorous exercise, in part due to the improved oxygen delivery to the myocardium and the reduction in sympathetic tone.

On the other hand, during strenuous physical activity, there is a transient increase in the risk of acute myocardial infarction (AMI), especially among individuals who do not exercise regularly. In a study of 1194 men diagnosed as having AMI, vigorous exercise (activity ≥6 MET) was involved in 7.1% of the cases at the onset of the infarction. The RR during vigorous exercise or within the following hour was 2.1, and was higher in patients who exercised less than four hours weekly on a regular basis than in those who exercised more than 4 hours a week (RR=6.9 and RR=1.3, respectively; P<.01). In another report, the RR during exercise was 10-fold higher than the risk under other circumstances.

Finally, although vigorous exercise has been associated with a number of harmful effects (episodes of bronchoconstriction, hyperthermia or hypothermia, dehydration, urticaria, and even anaphylaxis), the beneficial effects of regular exercise on health far surpass the risks.

THE LACK OF EXERCISE AS A HEALTH PROBLEM

Inadequate physical activity is considered to be an independent risk factor for coronary artery disease. Approximately 12% of the total mortality in the United States is related to the lack of regular physical activity, and inactivity is associated with at least a 2-fold increase in the risk of a coronary event, with a RR similar to that of hypertension, hypercholesterolemia, or smoking. It is estimated that there are around 200 000 deaths/year due to ischemic heart disease, cancer, or type 2 diabetes mellitus related to a sedentary lifestyle.

In contrast, regular physical activity and cardiovascular fitness reduce the total mortality. In the prospective study...
carried out by Blair et al.29 to assess the relationship between changes in physical fitness and risk of mortality, the authors performed follow-up studies in 9777 men for a mean period of 5.1 years. All of the subjects underwent 2 medical examinations, at a mean interval of 4.9 years, which included maximal exercise tests, to determine the changes, or deterioration in physical fitness. Throughout follow-up, there were 223 deaths corresponding to all-cause mortality and 87 cardiovascular deaths. The highest age-adjusted, all-cause mortality rate was observed in men who were unfit at the time of both examinations (122/10 000 man-years). In contrast, the lowest mortality rate was found in the men who were physically fit at both examinations (39.6/10 000 man-years). Among the individuals who had improved their level of fitness during the interval between examinations, the age-adjusted death rate was 67.7/10 000 man-years. This corresponds to a reduction in mortality risk of 44\% (95\% CI, 25-59) with respect to those who were found to be unfit at both examinations. Improvement in physical fitness was associated with a lower age-adjusted mortality rate, with health status and with other risk factors of early mortality. For each increase by 1 minute in treadmill time between the 2 exercise tests, there was a decrease of 7.9\% in the risk of mortality ($P=0.001$). Thus, this test shows that men who maintain or improve their good physical condition have a lower likelihood of dying from all causes and from cardiovascular disease than those who remain in poor physical condition.

Despite the fact that the world is becoming aware of this relationship and that increasing numbers of people are undertaking exercise programs, in a superdeveloped country like the United States, 25\% of the adults still do not engage in leisure-time physical activity and only 15\% follow the recommendations of 30 minutes of moderate exercise 5 days a week.61 Population surveys continue to indicate that the levels of physical activity are low in the United States. A recent study has reported the prevalence of poor physical fitness in the population ranging in age between 12 and 49 years and its relationship to the risk factors of ischemic heart disease. A cohort from the National Health and Nutrition Examination Survey 1999-2002, including 3110 adolescents between the ages of 12 and 19 years and 2205 adults from 20 to 40 years of age, all free of cardiovascular disease, who underwent treadmill exercise testing to achieve at least 75\% to 90\% of their age-predicted maximum heart rate. Low levels of fitness were detected in 33.6\% of the adolescents (approximately 7.5 million United States adolescents) and in 13.9\% of the adults (approximately 8.5 million United States adults). The prevalence was similar among girls and boys (34.4\% and 32.9\%, respectively; $P=0.40$), but was higher in adult women than in men (16.2\% and 11.8\%, respectively; $P=0.03$). The body mass index (BMI) and waist circumference were inversely related to fitness in all the age and sex groups. The total cholesterol and systolic blood pressure were higher and high-density lipoprotein cholesterol (HDL-C) concentrations were lower in the group with low levels of fitness, as compared to the high fitness group.62

On the other hand, the increase in childhood obesity in industrialized countries is attributed to the lack of physical activity that is becoming increasingly evident among children. It should be noted that the sedentary lifestyle can begin in early childhood, as reflected in the study carried out by Reilly et al.63 in Scottish 3-year-olds, with a follow-up study at 5 years. The behavior of these children was sedentary 79\% of the time at age 3 and 76\% of the time at age 5, and the median time occupied in physical activity was only 2\% of the time monitored at age 3 years and 4\% at the age of 5. In Spain, the authors of different studies affirm the importance of a sedentary lifestyle with respect to childhood and adolescent obesity, and cardiovascular risk.64,65

EXERCISE IN PRIMARY AND SECONDARY PREVENTION

The evidence provided in clinical studies to establish the benefits of exercise in primary and secondary prevention is inadequate due to a number of factors. The adherence in randomized studies is not good because, on the one hand, from an ethical or practical point of view, it is difficult to assign active individuals who exercise regularly to the control group and, on the other, after several years of follow-up, the level of exercise could come to be similar in the 2 groups. Moreover, these studies usually include few patients and, therefore, the significance of the benefit they show is limited. Thus, not all the reports reach the same conclusions concerning the effect of exercise on the reduction of cardiovascular risk. Oja,66 in his review of 19 observational studies and 15 randomized studies involving primary prevention in an inactive healthy population that included middle-aged and elderly men and women, did not find a clear correlation. On the one hand, the results of cross-sectional and longitudinal studies indicate a gradual dose-response relationship between the amount of physical activity and all-cause mortality, stroke, and different coronary risk factors, with similar effects in men and women. On the other hand, randomized studies have demonstrated a clear and gradual response to the amount of exercise of the oxygen consumption, but not of the risk factors. In consequence, most of the conclusions concerning the benefits of exercise are drawn from observational studies in which the patients who exercised regularly presented a significantly lower incidence of ischemic heart disease and a reduced risk of primary cardiac arrest.67

A number of studies demonstrate an inverse relationship between physical activity and energy expenditure, physical exercise, and fitness, and the risk of ischemic heart disease and death, both in men and
women of different ethnic groups and from different countries. The benefit of exercise in relation to the risk of myocardial infarction was demonstrated in the INTERHEART study with patients from 52 countries. Regular physical activity was associated with an odds ratio (OR) for a first myocardial infarction of 0.86, with a population attributable risk of 12%. This beneficial effect was observed in men and women, young and old, and in every country studied. However, there is no consensus as to the amount and intensity of the physical activity required in primary prevention. The incorporation of physical activities of moderate intensity into the lifestyle appears to provide benefits comparable to those associated with a structured exercise program. A number of studies have proposed to verify the influence of exercise on cardiovascular health in different groups of patients. Among these studies, that of Sesso et al. carried out in the population involved in the Harvard Alumni Health Study, is of particular interest. The study consisted of the 16-year follow-up of 12,516 men with a mean age of 57.7 years for the purpose of determining the effect of physical activity on cardiovascular risk. Weekly physical activity was measured on the basis of the energy expended per week in kilojoules or kilocalories (4.2 kJ are equal to 1 kcal) from stairs climbed, blocks walked and recreational or sports activities over the preceding year. The mean physical activity level was 8362 (8215) kJ/week, and 74.1% of the participants engaged in recreational or sports activities. Most of the energy was expended in moderate (4 to 6 MET) or intense (≥ 6 MET) activities, for a contribution of 37.4% and 56.1%, respectively, to the total energy expended per week. During follow-up, there were 2135 cases of coronary heart disease, 576 of which corresponded to myocardial infarction, 512 to angina pectoris, 207 to coronary revascularization, and 840 to cardiac death. In the age-adjusted model, there was an L-shaped association between the levels of physical activity and the risk of coronary heart disease, with a reduction in risk of 23% for a physical activity resulting in an energy expenditure of 4200 kJ/week, and there was no additional reduction in risk for expenditures over 8400 kJ/week. Moreover, it was observed that the association with cardiovascular risk factors did not modify the inverse relationship between physical activity and cardiovascular risk. Men aged less than 60 years with an energy expenditure greater than or equal to 4200 kJ/week had lower levels of coronary risk than those who were inactive. This energy expenditure is achieved by performing, on a daily basis, activities such as brisk walking, recreational swimming or cycling, or doing home repairs, or yard work for 30 minutes a day. This study also indicates that vigorous activities are associated with cardiovascular disease risk reduction, whereas, with moderate or light activities, there is no clear reduction of the risk. Moreover, a physically active lifestyle can reduce the probability of the development of concomitant risk factors. In particular, men aged 60 years or more whose energy expenditure is greater than or equal to 4200 kJ/week exhibit only small increases in cardiovascular risk in the presence of coronary risk factors. According to the results of this study, the total weekly physical activity (>4200 kJ/week) is associated with the most marked reduction in cardiovascular risk. Moderate or light activities, which can be measured with less precision, result in a nonsignificant reduction in cardiovascular risk of 10%.

Thus, in other reports, like that of Lee et al., the level of intensity of the exertion as perceived by the individual is employed as a criterion for its assessment. This also appears to affect risk in that those who feel that they are performing moderate or intense exercise have a lower cardiovascular risk than those who perceive their activity to be light or less intense.

In the assessment of the population of women, we have to refer to the work of Stampfer et al., who followed 84,129 women who were free of cardiovascular disease, cancer, and diabetes for 14 years. There were 1128 coronary events (296 deaths and 832 nonfatal AMI). Low-risk women (nonsmokers with a BMI under 25, who engaged in moderate or vigorous exercise for over 30 minutes a day, consumed less than 10 grams of alcohol a day and a diet that promoted cardiovascular health) had a RR of coronary heart disease of 0.17. Taking these data into account, if the entire population had been low-risk, 82% of the coronary events could have been avoided.

In another study involving 70,000 postmenopausal women, both walking and vigorous exercise were associated with a reduction in risk for cardiovascular events, irrespective of age, race, or BMI. However, physical fitness and cardiorespiratory capacity have a strong and gradual inverse association with total mortality, both cardiovascular and noncardiovascular. The VO2max and the duration of exercise during the exercise stress test are strong predictors of mortality. In the follow-up of 1294 Finnish women with no cardiovascular or pulmonary disease or cancer over a 10-year period, the RR of death was found to be related to the VO2max. After adjustment for age, the years of follow-up, the absence of smoking and alcohol consumption, the RR in the unfit group (VO2max <27.6 mL/kg/min) was 2.76 for all-cause mortality and 3.09 for cardiovascular deaths, with respect to men who are physically fit (VO2max >37.1 mL/kg/min). With respect to the duration of the exercise stress test, in the group in which it was less than eight minutes, the RR were 3.94 and 4.54, respectively, as compared to those who had withstood over 11 minutes. The lowest cardiorespiratory fitness is associated with a risk comparable in importance to those reported for high systolic blood pressure, smoking, obesity, and diabetes.
The intensity of exercise necessary to obtain cardiovascular benefits was evaluated in a cohort of 44,452 men ranging in age between 40 and 75 years, enrolled in the Health Professionals’ Follow-up Study. During follow-up of 475,755 patient-years, there were 1700 new cases of ischemic heart disease. The total physical activity, running, weight training, and rowing correlated with a significant decrease in cardiovascular risk. Men who ran for at least an hour a week had a 42% reduction in risk. Those who trained with weights for at least 30 minutes a week and those who rowed for at least 1 hour a week achieved a risk reduction of 23% and 18%, respectively. The RR corresponding to moderate intensity (4 to 6 MET) and to high intensity (6 to 12 MET) exercise were 0.94 and 0.83, respectively, with respect to that of low intensity (<4 MET). Walking briskly for 30 minutes a day was associated with a risk reduction of 18%. The duration of the exercise session required to reduce cardiovascular risk is not clear; although the length of time does not appear to have any influence, the amount of energy expended in each session does play a role to the point that the expenditure of a large amount of energy reduces age-adjusted risk. After adjusting for age, the functional capacity of an individual, measured in MET, during a maximal exercise test is a strong predictor of mortality in men with and without cardiovascular disease. For each MET by which the exercise capacity is increased, survival is increased by 12%. Similar data were reported in the analysis of 3043 individuals (1431 men and 1612 women) from the Framingham study, who underwent treadmill exercise testing to determine its usefulness in predicting coronary heart disease. The patients were followed for 18.2 years and the variables employed to evaluate risk were ST segment depression, the inability to reach 85% of the predicted maximum heart rate and exercise capacity. The latter variable was associated with the lowest risk of heart disease, in such a way that, for each increment in MET, as an expression of exercise capacity, the risk was reduced by 13%. Similar results were obtained in other studies involving asymptomatic women, in which the follow-up of cardiovascular complications revealed an inverse relationship with respect to fitness, expressed as the exercise time during the exercise stress test.

With respect to the effects of exercise on cardiovascular risk factors, poor fitness appears to be associated with the development of diabetes, hypertension, and metabolic syndrome both in young and middle-aged subjects. The CARDIA study involved the follow-up of 5000 men and women between the ages of 18 and 30 years over a 15-year period. During follow-up, the incidences of new cases of diabetes, hypertension, and metabolic syndrome were 0.3%, 1.3%, and 1% per year, respectively. Physically unfit individuals (below the 20th percentile) had a 3 to 6-fold higher probability of developing these risk factors than those who were physically fit (above the 60th percentile). In another study, carried out in a population of 9007 men (age, 44 [9] years; BMI, 25 [3]) and 1491 women (age, 44 [9] years; BMI, 22 [2]), the authors carried out a prospective analysis of fitness and the metabolic syndrome. During follow-up (mean, 5.7 years), 15% of the men and 3.8% of the women developed the metabolic syndrome, there being a significantly lower probability in the middle and upper thirds in terms of fitness in men (hazard ratios, 0.74 and 0.47, respectively) and in the upper third in women (hazard ratio, 0.37).

Finally, with respect to secondary prevention, different studies point out that exercise benefits patients with ischemic heart disease. Light or moderate recreational physical activity of at least 4 hours a week or walking over 40 minutes a day reduces the incidence of both all-cause death and cardiovascular death in patients with coronary heart disease. In a meta-analysis carried out in 2005 by Clark et al, 63 randomized studies were reviewed for the purpose of evaluating the efficacy of different cardiac rehabilitation programs, with and without exercise, in patients with documented ischemic heart disease (postinfarction in the majority). These authors observed that exercise alone produced a significant reduction in all-cause mortality (6.2% vs 9%; RR, 0.72; 95% CI, 0.51-0.95).

The reported observations have led the majority of the medical and cardiology societies to promote exercise as part of the change toward a lifestyle that improves cardiovascular health. Thus, they recognize that adequate physical activity is valuable as a complementary therapeutic measure for the control and treatment of coronary heart disease and cardiovascular risk factors.

DIFFERENT RECOMMENDATIONS AND GUIDELINES FOR PHYSICAL ACTIVITY

Exercise in Hypertensive Individuals

In hypertensive patients, the VO2max reached during an exercise stress test is of prognostic significance. Low VO2max levels are significantly and independently associated with a higher incidence of cardiovascular events and total mortality in hypertensive patients. Thus, the beneficial effect of exercise goes beyond the mere decrease in arterial blood pressure.

Exercise programs stressing the dynamic component prevent the development of hypertension or lower the blood pressure in normotensive and hypertensive adults. However, the effect of physical activity on arterial blood pressure is more marked in hypertensive patients, with a mean reduction of the systolic and diastolic arterial pressure of 6 to 7 mm Hg, versus 3 mm Hg in normotensive individuals. There is no evidence that...
age, weight, or race influence of blood pressure-lowering effect of training, and, although the influence of sex is unclear, the pressure-lowering response appears to be slightly less marked in women.

With respect to the features of the training program, it seems that all types of exercise, including weight training cycles, reduce arterial blood pressure in hypertensive individuals. To date, there does not appear to be consensus as to the most adequate exercise intensity, although moderate-intensity exercise results in similar or even more marked decreases than those produced by high-intensity exercise. With regard to the type of exercise, most authors agree on the efficacy of programs that include aerobic activities such as walking, jogging or running, swimming, cycling, dancing, etc

The lipid response to aerobic exercise in untrained men appears to be independent of baseline cholesterol levels and may, in part, be due to the increase in lipoprotein lipase activity. Immediately after a session of aerobic exercise at an intensity of 70% of VO2max, there is a decrease in total and low-density lipoprotein cholesterol (LDL-C), which return to baseline concentrations 24 hours later.

Exercise and Hypercholesterolemia

The lipid response to aerobic exercise in untrained men appears to be independent of baseline cholesterol levels and may, in part, be due to the increase in lipoprotein lipase activity. Immediately after a session of aerobic exercise at an intensity of 70% of VO2max, there is a decrease in total and low-density lipoprotein cholesterol (LDL-C), which return to baseline concentrations 24 hours later. The reduction in the serum triglyceride concentration and the increase in the HDL-C and HDL3-C fractions, as well as the increase in lipoprotein lipase activity, persist over a longer period of time (at least 48 hours). There are very few studies that demonstrate the response of lipid levels during a training program, and the effects can vary in relation to the nature of the dyslipidemia. High cholesterol and triglyceride levels and the total cholesterol/HDL-C ratio are correlated with greater decreases following exercise, whereas low HDL-C concentrations are associated with less marked increases in the response to exercise.

With respect to age, to obtain improvements in lipemia, elderly individuals require more prolonged exercise programs than young people. In terms of sex, there are

<table>
<thead>
<tr>
<th>Type of exercise</th>
<th>Walking, running at an easy pace, moderate intensity running, swimming, cycling, dancing, etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity</td>
<td>Training HR, applying the Karvonen formula: One set per exercise without surpassing a systolic arterial pressure of 150 mm Hg or diastolic arterial pressure of 100 mm Hg</td>
</tr>
<tr>
<td>Frequency</td>
<td>Individuals with low functional capacity should divide each session into 2-3/day lasting 10-15 min</td>
</tr>
<tr>
<td>Duration of the session</td>
<td>Add 5 min of warm-up exercises (calisthenics) at the start and 5 min of cool-down exercises (stretching) at the end</td>
</tr>
<tr>
<td>Time</td>
<td>Indefinite</td>
</tr>
</tbody>
</table>

Table 4. Components of an Exercise Program for Patients With Hypertension

- **Type of exercise**
 - Isotonic or dynamic, involving large muscle masses. Strength training (isometric exercises)
 - Walking, running at an easy pace, moderate intensity running, swimming, cycling, dancing, etc

- **Intensity**
 - Moderate isotonic exercise, according to the Borg scale:
 - 60%-80% of the theoretical MHR;
 - 40%-65% of the HR reserve + resting HR;
 - 40%-65% of the VO2max;
 - Isometric exercise: 40%-50% of 1 RM

- **Frequency**
 - 3 Sessions of isotonic exercise a week

- **Duration of the session**
 - Isotonic exercise: beginning of the program, 20 min; maintenance phase, 30-60 min
 - Isometric exercise: 8-10 repetitions per apparatus

- **Time**
 - Indefinite

The MHR can be determined on the basis of the theoretical value or as the peak HR reached during a maximal strength test. The HR reserve is obtained by subtracting the resting HR from the MHR. The advantage of applying the HR reserve is that it eliminates the influence that the neurohormonal system may have on the HR, as well as the action of drugs.

HR indicates heart rate; MHR, maximal heart rate; RM, repetition maximum load.

Borg scale: a subjective rating of perceived exertion.
TABLE 5. Training Program to Modify the Lipid Profilea

<table>
<thead>
<tr>
<th>Type of exercise</th>
<th>Intensity</th>
<th>Frequency</th>
<th>Duration of the session</th>
<th>Time</th>
</tr>
</thead>
</table>
| Isotonic or dynamic, with involvement of large muscle masses | 55%-65% of the MHR; 50%-60% of the HR reserve + resting HR; 50%-60% of the VO2max | 3-5 Sessions a week | Beginning of the program: 20-30 min; maintenance phase: 40-50 min | Young individuals: 6-12 months
Adults >50 years: 2 years |
| Vigorous walking, running, swimming, cycling, etc | HR reserve = MHR – resting HR (Karvonen formula)104 | | | |
| | Individuals with low functional capacity should divide each session into 2 a day of shorter duration | | Add 10 min of warm-up exercises (calisthenics) at the start and 10 min of cool-down exercises (stretching) at the end | |

HR indicates heart rate; MHR, maximal heart rate.

Exercise and Type 2 Diabetes Mellitus

With age, there is an increase in the prevalence of type 2 diabetes mellitus associated with the loss of muscle mass, and it is estimated that at least 25% of its incidence is attributable to a sedentary lifestyle. Different studies have demonstrated a decrease in the incidence of type 2 diabetes mellitus among physically active individuals, and the Finnish study on the prevention of diabetes has estimated a risk reduction of 58% when active individuals are compared with those who are sedentary.105 The effects of aerobic exercise on glycemic control are inconsistent, and it seems that only certain subgroups benefit, such as those patients with type 2 diabetes managed with dietary therapy who achieve good glycemic control. In patients with type 2 diabetes mellitus, beneficial effects of aerobic exercise (75% of the VO2max) performed for 45 minutes twice a week, plus 25 minutes of 2-minute sets (85% of the VO2max) with 3-minute recovery periods (50% of the VO2max) once a week, are observed after 12 months. The benefits consist of a loss of nearly 50% of abdominal fat and an increase in muscle mass of 23%, with a significant decrease in the glycosylated hemoglobin (HbA1c) levels and an increase in insulin sensitivity. Moreover, strength training produces an increase in muscle strength, with a notable improvement in HbA1c concentrations, and there is a close relationship between glycemic control and muscle mass. These findings are in accordance with the pathogenesis of this type of diabetes and, thus, strength training should be included in exercise programs aimed at glycemic control. A 12-month controlled exercise program reduces BMI and decreases the HbA1c level by 0.26%, systolic arterial pressure by 7.7 mm Hg, total cholesterol by 0.33 mmol/L, and fibrinogen by 0.28 mmol/L, whereas the simple recommendation to exercise is not accompanied by changes in physiological or biochemical variables.106 Consequently, for a training program for type 2 diabetic patients to be effective, it should include moderate-intensity dynamic exercise and high-level strength training in order to improve cardiorespiratory capacity, muscle strength and different physiological and biochemical parameters.

Exercise and Obesity

According to the Framingham study, obesity is a minor coronary risk factor, and does not appear to increase the risk of mortality in men who are physically fit. The cardiovascular benefits obtained by increasing physical activity are greater than those of dietary control to lose weight. Physical training in association with a hypocaloric
diet reduces body weight, preferentially the percentage corresponding to fat, as it increases resting energy expenditure and metabolic indices. Weight loss is associated with an improvement in insulin resistance, reduction of inflammatory markers like C-reactive protein, decreases in diastolic and systolic arterial pressures, and improvement in the lipid profile.94

Moreover, physical activity can also counteract the increase in fat mass that occurs with age. In fact, older women athletes have a significantly lower amount of body fat than sedentary women of the same age (15% vs 27%). However, it should be taken into account that, to lose a significant amount of body fat, it is necessary to maintain a training period of at least 20 minutes a day, 3 days a week, with an intensity and duration sufficient to burn 300 kcal per session. Aerobic activities (walking, running, cycling) are those most widely recommended, and all of them are equally effective in reducing body fat, whereas anaerobic activities (weight lifting) increase muscle mass, but have a less marked effect on the amount of fat.

CONCLUSIONS

The balance between the risks and benefits of engaging in physical activity clearly favors the benefits, especially when it is performed regularly, although there appears to be a minimum weekly energy expenditure threshold required to reduce cardiovascular risk. Physical activities of moderate to high intensity with an energy expenditure of 1000 kcal per week or more result in the greatest benefit. In contrast, a sedentary lifestyle is associated with a 30% higher risk of ischemic heart disease than that reported for dyslipidemia or hypertension, surpassed only by smoking. Consequently, exercise should be considered the cornerstone on which to base changes in lifestyle aimed at the prevention of cardiovascular disease.

REFERENCES

TABLE 6. Components of an Exercise Program for Patients With Type 2 Diabetes Mellitus

<table>
<thead>
<tr>
<th>Type of exercise</th>
<th>Intensity</th>
<th>Frequency</th>
<th>Duration of the session</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotonic or dynamic, with involvement of large muscle masses. Strength training (isometric exercises)</td>
<td>Moderate to intense isotonic exercise, according to the Borg scale95; 70%-80% of the MHR; 60%-75% of the HR reserve + resting HR; 60%-75% of the VO2max Isometric exercise: 40%-50% of 1 RM</td>
<td>3 Sessions of isotonic exercise a week; 2 sessions of strength training</td>
<td>Isotonic exercise: beginning of the program, 15 min; maintenance phase, 35-40 min</td>
<td>Indefinite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vigorous walking, running, swimming, cycling, cross-country skiing</td>
<td>Training HR, applying the Karvonen formula94</td>
<td>High-volume, low-intensity circuit training involving weights, and exercise machines</td>
<td>Add 5 min of warm-up exercises (calisthenics) at the start and 5 min of cool-down exercises (stretching) at the end</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: HR indicates heart rate; MHR, maximal heart rate; RM, repetition maximum load; HR reserve = MHR – resting heart rate.
Boraita Pérez A. Exercise as the Cornerstone of Cardiovascular Prevention

52. Thompson PD, Franklin BA, Balady GJ, Blair SN, Corrado D, Estes NA 3rd, et al. Exercise and acute cardiovascular events placing the

92. Boraita Pérez A. Exercise as the Cornerstone of Cardiovascular Prevention.