Myocardial Cleft: An Anatomical Anomaly to Bear in Mind

To the Editor:

The doubts in the interpretation of images, whether angiographic or echocardiographic, due to clefts in the left ventricular myocardium, may lead to a chain of complementary explorations, more or less aggressive, to clarify their origins. Cardiac magnetic resonance imaging (CMRI) is a non-invasive imaging technique with an excellent spatial resolution, that allows for the anatomical diagnosis to be made of these myocardial clefts or crypts that may appear in healthy individuals as well as in patients with some kind of cardiovascular disorder.1-3

We present a case of a 58-year-old male who, after seeking medical care for atypical chest pain, underwent a diagnostic coronary catheterization due to discrepancies between the clinic signs that he presented and the complementary explorations carried out. The coronary catheterization did not show any lesions in the coronary arteries, but in the ventriculography, a finger-shape image was observed, with contrast penetration, in the inferior basal segment (Figure 1). In the echocardiography performed afterwards, various myocardial protrusions were observed that corresponded to the endocardial edge of the cleft which were interpreted as corresponding to a myocardial mass, and therefore a CMR was requested to complete the etiological study. In both the MR-film sequences, where no contractility alterations were observed, and in the sequences of the late enhancement after the administration of contrast, that showed the existence of a focal fibrosis, a characteristic image of a myocardial cleft was observed, located in the basal segment of the inferior portion (Figure 2). The patient...
level of the inferior basal segment, only observed in healthy volunteers, and one at the mid-apical septal level, observed both in healthy volunteers and in patients sent for a CMRI for other conditions. The importance of this series lies in that it demonstrates that in more than 6% of healthy individuals CMRI detects myocardial clefts. This finding has no pathological meaning, but it is important to know it given that an erroneous diagnosis, such as non-compaction cardiomyopathy, could be harmful to the patient.

The cause of the clefts is unknown, although it has been postulated that in patients with hypertrophic cardiomyopathy it could be due to myocardial ischemia from micro-vascular dysfunction and/or myocardial disarray, an alteration that could be related with the spiral position of the myocardial fibres. Nevertheless, until now, it has not been demonstrated that its identification in healthy individuals implies myocardial disease.

To conclude, the CMR allows for the identification of the presence of clefts in the left ventricle that, although it may be an infrequent finding, is important to know about to avoid an incorrect diagnosis. According to the information found in the literature, it would seem that the most characteristic localisation in healthy individuals is the inferior basal segment.

Sandra Pujadas, Juan Sanchez-Rubio, Jose G. Galache, and Francesc Carreras

REFERENCES

To the Editor:

Thrombosis (ST), especially in drug-eluting stents, is currently one of the largest concerns in interventional cardiology. We read with great interest the article by Gallego et al.1 published in Revista Española de Cardiología. We would like to mention.

The incidence of ST in drug-eluting stents (DES) and selective angioplasty stents (PAS) is incredibly low (0.04%) and it is even lower than that documented in a meta-analysis of clinical trials.2-4 In a realistic scenario, the incidence of ST is greater than that observed in a clinical trial; however, previous observational studies have reported variable ST incidences (1.3%-3.3%).5-7 The authors have used the stent as a unit of follow-up instead of the chronological types of thrombosis.

However, there are aspects regarding this study that we would like to mention. The authors have analyzed the incidence of ST, its treatment, complications, and its prognosis in a sample of patients that underwent percutaneous coronary interventionism with conventional stents (CS) and drug-eluting stents. It is possible that some of the late thromboses took place after the implantation of a DES over a restenosis of the previously implanted CS. Considering the restenosis of a CS treated with a DES to quantify the incidence of ST, it is possible that the methodological problem was solved that represents the ideal method to document ST, it tends to underestimate the true magnitude of this problem and its prognosis in a sample of patients that are reinfused with fibrinolysis nor the sudden deaths produced by thrombosis.5

The incidence of ST in CS and PAS is incredibly low (0.6%) and it is even lower than that documented in meta-analyses of clinical trials.2-4 In a realistic scenario, the incidence of ST is greater than that observed in a clinical trial; however, previous observational studies have reported variable ST incidences (1.3%-3.3%).6-8 The authors have used the stent as a unit of follow-up instead of the chronological types of thrombosis.

The authors have analyzed the incidence of ST, its treatment, complications, and its prognosis in a sample of patients that underwent percutaneous coronary interventionism with conventional stents (CS) and drug-eluting stents. It is possible that some of the late thromboses took place after the implantation of a DES over a restenosis of the previously implanted CS. Considering the restenosis of a CS treated with a DES to quantify the incidence of ST, it is possible that the methodological problem was solved that represents the ideal method to document ST, it tends to underestimate the true magnitude of this problem and its prognosis in a sample of patients that are reinfused with fibrinolysis nor the sudden deaths produced by thrombosis.5