Introduction and objectives. Each year the Spanish Society of Cardiology Working Group on Cardiac Catheterization and Interventional Cardiology reports on the data contained in a national registry of procedures performed. The present report is for the year 2008. It contains information on the scope of interventional cardiology in Spain and provides data for use in comparisons with other countries.

Methods. Hospitals provided data voluntarily. The information was analyzed by the steering committee of the Working Group.

Results. Data were submitted by 131 hospitals (74 public and 57 private) that performed relevant procedures, mainly in adults. In total, 136,458 diagnostic procedures were carried out, of which 123,031 involved coronary angiography. Numbers were little changed from the previous year, with an overall rate of 2,658 coronary angiograms per million population. The number of percutaneous coronary interventions increased by 2.2% to 61,810, with a rate of 1,334 per million inhabitants. In addition, 101,753 stents were implanted, of which 58.2% were drug-eluting. The number of procedures carried out for acute myocardial infarction was 12,079, which makes up 20.6% of all percutaneous coronary interventions and is an increase of 6.7% relative to 2007. The most common intervention in adults with congenital heart disease was closure of an atrial septal defect, which was performed in 305 cases. The most common valve procedure was mitral valvuloplasty, which was performed in 371 cases with a success rate of 96%. Further, 151 aortic percutaneous valves were implanted.

Conclusions. The most significant increases in activity were in procedures for ST-segment elevation myocardial infarction and percutaneous valve implantation. The rates of all other diagnostic and therapeutic procedures changed only slightly.

Key words: Registry. Cardiac catheterization. Coronary angiography. Coronary angioplasty. Stent.
INTRODUCTION

Since 1990, the main aim of the Working Group on Cardiac Catheterization and Interventional Cardiology has been to collect and analyze data from the Spanish hospitals which perform relevant procedures, with steady improvements taking place in data acquisition.1-17 Data collection and their analysis indicate the interest the interventional cardiology community places on continuous improvement. Data for 2008 were presented to the members of the Section at its annual meeting which took place June 19-21, 2009, in Palma de Mallorca, Spain, and were also presented on its official website (http://www.hemodinamica.com).

The level of information obtained represents, on the one hand, the actual situation in Spain and allows comparisons with other countries and, on the other, facilitates the assessment and comparison of interventional cardiology in the different autonomous communities of Spain. The free availability of these data facilitates knowing how the resources are distributed and assessing the different trends in the use of diagnostic and therapeutic procedures.

This work presents the 18th report on interventional cardiology in Spain, and represents the activities of all the public hospitals and most of the private ones.

METHODS

Data were collected on diagnostic procedures and interventional cardiology in most of the Spanish hospitals. Data were provided on a voluntary basis and were not audited. Only anomalous data or those with values outside the trend for a given hospital in recent years were requested from each researcher for reanalysis. Collection was performed using a standard questionnaire (Appendix 1), delivered to all the Spanish cardiac catheterization laboratories in 2 formats: electronically through the website of the Working Group on Cardiac Catheterization and Interventional Cardiology of the Spanish Society of Cardiology (http://www.hemodinamica.com), to be filled in online; and more traditionally, the same questionnaire was distributed on paper.

IZASA company was in charge of distribution and collection. The information obtained was analyzed by the steering committee of the Working Group and is presented in this article.

The population was estimated at both the national level and at the level of each autonomous community with population estimations provided by the Instituto Nacional de Estadística (National Institute of Statistics) for January 1, 2008 (available from: http://www.ine.es). The Spanish population was estimated at 46 157 822 inhabitants.

Similar to previous registries, hospitals were defined as public when, regardless of their source of funding, they served a specific area within the public health system, and were considered private otherwise.

RESULTS

Infrastructure and Resources

A total of 131 hospitals performing relevant procedures in adults, including 9 that also performed pediatric procedures, participated in the present registry (Appendix 2). All 74 public hospitals and 57 private hospitals submitted their data, which represents almost all the hospitals performing relevant procedures in Spain. A total of 174 cardiac catheterization laboratories were available, of which 112 (64%) were in public hospitals. After adjusting for the population, there were 2.8 hospitals and 3.8 catheterization laboratories per million population, with no change in these figures in the last 2 years. Of the public hospitals, 71% have a 24-hour emergency response team and 69% have a cardiac surgery unit.

Regarding staff, 458 physicians performed interventions in 120 hospitals during 2008, an increase of 12% compared to 2007, with 3.5 specialists per hospital and 10 specialists per million population. Public hospitals had 4.3 specialists per hospital and 2.9 per laboratory, and private hospitals had 2.4 specialists per hospital and 2 per laboratory. Regarding nursing staff, 126 hospitals reported 550 registered nurses (DUE, from the Spanish diplomados universitarios en enfermería) and 100 radiology technicians (ATR from the Spanish técnicos de radiodiagnóstico), with a mean of 5 DUE or ATR per hospital and 3.8 per laboratory.

Diagnostic Procedures

In 2008, 136 458 diagnostic procedures were performed in Spain, with little increase compared to the previous year, probably because the number of hospitals had not increased and neither had the

ABBREVIATIONS
AM: acute myocardial infarction
DES: drug-eluting stent
PCI: percutaneous coronary intervention
number of laboratories in public hospitals, which is where most of the procedures are conducted. Of these procedures, 123,031 involved coronary angiogram procedures (a 0.6% increase compared to 2007). In total, 24% were performed in women and 22% in patients more than 75 years of age (similar to 2007). Taken together, the data indicate a national average of 2658 coronary angiogram procedures per million population, fewer than in 2007, since the increase of total population was far greater than that of the number of procedures; this is different from the most recent European data published for 2005, which reported 4030 coronary angiogram procedures per million population in the countries participating in this registry.18

Figure 1 shows the distribution of all the diagnostic procedures and the changes mentioned, as well as fluctuations among the different patient groups, which are probably related to the data collection methodology. During 2008, the public hospitals performed 85% of diagnostic procedures; 57 hospitals performed more than 1000 coronary angiogram procedures and 14 hospitals performed more than 2000, representing 43% and 11%, respectively, of all hospitals (Figure 2). A mean of 1041 diagnostic procedures were performed per hospital and 784 per laboratory (without important variations compared to the last 2 registries14-17). There were 1578 (884) diagnostic procedures per public hospital, which was a slightly lower figure than that of the previous year.

The national average of coronary angiogram procedures was 2658 (438) per million population. Figure 3 shows the distribution of these procedures per autonomous community. Two communities present values at the highest and lowest extremes of the range, whereas the others are similar, ranging around 650 procedures.

Regarding intracoronary diagnostic techniques, intravascular ultrasound (IVUS) was the most widely used, followed by pressure guidewire. The use of IVUS continued its increasing trend, although to a lesser extent (31% in 2007 and 17% in 2008); the use of pressure guidewire decreased by 14% (in 2007 it had increased by 37%). Optical coherence tomography continued to slowly increase, reaching 196 procedures; Doppler flow wire followed the same trend, increasing from 83 procedures in 2007 to 103 in 2008. Other diagnostic procedures, although few, included endothelial function studies, thermography, and intracardiac ultrasound procedures. Figure 4 shows how the use of the different diagnostic intracoronary techniques has changed in recent years.

Regarding the access route, the use of the radial artery continues to increase, as observed in previous years, and is almost equal to use of the femoral artery; in 2008 the radial artery was used in 48% (41.4% in 2007 and 38.1% in 2006).
During 2008, 61,810 percutaneous coronary intervention procedures (PCI) were performed, an increase of 2.2% compared to the previous year, and was the smallest increase during the last 4 years. The recent change in PCI procedures in Spain is presented in Figure 5. The number of PCI per million population was 1334 (231) throughout the country, somewhat less than the most recently published European data, which reported a figure of 1601 PCI per million inhabitants in 2005. The mean number of interventional procedures was 471 per hospital and 355 per laboratory, and the average number of interventions per year per operator was 135, a decrease compared to the previous year, since the number of physicians had increased by 12% compared to 2007. Public hospitals performed 90% of PCI procedures, with a mean of 751 PCI procedures per hospital and 476 per laboratory. Regarding procedures per operator, these continued to decrease compared to the previous year for the reasons described above, with 167 procedures.

Percutaneous Coronary Intervention Procedures

Figure 2. Distribution of hospitals according to the number of coronary angiogram procedures performed.

Figure 3. Distribution of coronary angiogram procedures per million population by autonomous community.
that the use of drug-eluting stents (DES) remained stable. Intervention on the left main coronary artery (LMCA) remained constant in Spanish hospitals; there were 2356 procedures in 2008, of which 70% (1656) were unprotected LMCA interventions, representing 3.8% of all PCI. A total of 1780 procedures for chronic occlusion were recorded, representing 2.9% of all PCI. Grafting procedures made up 2% of the total; the saphena vein was used in 1007 procedures (81%); the mammary artery was used in 233 procedures.

Glycoprotein IIb/IIIa inhibitors (anti-GPIIb/IIIa) and antithrombotic agents were used as adjunctive drug therapy in 13,766 procedures (22.3%), with a very similar distribution to that of the previous year: 62.3% using abciximab; 19.3% using tirofiban; 9.1% using eptifibatide; and 8.9% using bivalirudin, which presented the greatest increase (3.1% more than the previous year). These figures refer to the...
large numbers of procedures, with 15 hospitals performing more than 1000 PCI.

In relation to the overall outcome of PCI, the figures remained similar to previous years with 95% success, 4.6% failure without complications and 1.5% complications, as follows: 0.4% mortality during the procedure, 0.7% acute myocardial infarction (AMI), and 0.1% urgent surgery. Hospital mortality was 0.9%.

Intracoronary diagnostic techniques (IVUS and pressure guidewire) are basically used to make decisions on lesions of unknown severity and improve the result of intervention and, less frequently, in research protocols. As mentioned, the use of IVUS increased by 9.3% and pressure guidewire fell to 2.5% of all PCI.

The use of the radial artery as an access route continued to increase and reached 43.2% of PCI procedures versus 40.1% in 2007. The femoral route was used for 36,641 percutaneous closure devices, of which 65% were collagen based; 17.4%, suture-mediated; and 17.6% using other types of devices.
8% used both types of stent compared to 52% of procedures in which DES only was used.

The use of DES strongly differed between the autonomous communities (ranging between 77.6% and 40.3%; Figure 8), overall with similar figures to those of 2007.

Regarding the safety of stents, 449 cases of stent thrombosis (data submitted by 71 hospitals) were reported for the year. Their distribution was similar to that of the previous year, with 56% occurring in DES. In relation to the time of thrombosis, although there were no differences in early thrombosis, there were differences in late and very late thrombosis. Data for the last 3 years are shown in Table 2; 2008 data did not differ from 2007.

Stents

A stent was implanted during 93.3% of all PCI procedures (a total of 57,683 PCI), with 101,753 units being implanted during 2008. The number of stents per procedure continued to increase, the current ratio being 1.76 (1.7 in 2007). The use of DES reached 58.2% (59,220 units), with a 0.5% increase compared to the previous year. The number of stents implanted increased by 6.7%; the relative increase was due to DES in 58% and to conventional stent in 42%. The type of stent used depended on the characteristics of both the patients and the lesions such that either one type or both types of stent were used in a large number of procedures; thus, in 2008, of a total of 40,297 procedures on which information was provided,
13.7%. No data are available on the incidence of STEMI in Spain, but if we assume that the annual estimation is 45 000 AMI patients admitted to Spanish hospitals, then primary PCI would be used in just 17.4%. A total of 51 hospitals reported a median door-to-balloon time of 74 min and a mean door-to-balloon time of 80 (46) min.

The national distribution of PCI for AMI was more dispersed than that of 2007, with a mean of 261 PCI for AMI per million population, with a range of 312 procedures (377 procedures in the case of PCI); the communities that have an established program of continuous care for AMI patients present the highest values (Figure 10 and Figure 11).

There was a mean of 106 PCI procedures per hospital (more than 2007, with 95 procedures) and the distribution between hospitals remained the same, since 58% performed fewer than 100 PCI procedures for AMI/y (Figure 12).

As in the other procedures, the radial artery was also used as the PCI access route for AMI, with a total of 4145 procedures, representing 34.3% of the total, with little change compared to the previous year.

A total of 1009 PCI procedures were counted in patients who presented cardiogenic shock in the acute phase of AMI. The procedure was successful in 57% of the patients and hospital mortality was 25%.

Other Percutaneous Coronary Intervention Devices and Procedures

Rotational atherectomy (rotablator) was the intracoronary technique that underwent the greatest increase in the 2008 registry, both in the number of hospitals and total number of procedures: 66 hospitals (16% increase) and 1006 procedures (30.6% increase). No directional atherectomy or intracoronary brachytherapy procedure was documented. Other devices present figures similar to those of 2007, such as the cutting balloon (1373 cases) and distal protection devices (247 procedures); however, the use of thrombus aspiration devices increased by 32% and protrusion balloons by 50%. Regarding other techniques, 35 septal ablation procedures were performed (37 in 2007), which involved 16 fistula embolization procedures and 39 stem cell implantation procedures.

Percutaneous Coronary Intervention in Acute Myocardial Infarction

A total of 112 hospitals provided data on PCI for AMI. In total, 12 079 procedures were performed in this context, which represents 20.6% of all PCI procedures, with a 6.7% increase relative to 2007. The current figures are slightly higher than those of the European Registry of 2005 (17% of all PCI procedures for infarction18). Of all procedures, 2101 (17%) were performed in women. In patients older than 75 years, 2435 procedures were performed, forming 20% of the procedures (without change in any of the patient subgroups compared to the previous year). Anti-GPIIb/IIIa agents were used in 51.8% of angioplasty procedures for ST-segment elevation AMI (STEMI) and thrombus aspiration devices in 30% of the procedures.

The distribution of PCI performed during acute phase of AMI was similar to that of previous years: 7837 (64%) primary PCI; 1945 (16%) rescue PCI; and 1822 (15.1%) facilitated PCI (Figure 9). The growing number of AMI procedures is due to the increase of primary PCI and facilitated PCI (6.5% in both cases), whereas rescue PCI decreased by 13.7%.

Non-Coronary Percutaneous Intervention in Adults

The number of valvuloplasty procedures increased by almost 10% in 2008, due to doubling the number of aortic valvuloplasty procedures, whereas the number of mitral valvuloplasty procedures has remained very similar for 8 years. There were 71 mitral valvuloplasty procedures (83%), 5 aortic valvuloplasty procedures (37 in 2007), and 16 pulmonary valvuloplasty procedures (Figure 13). The results of mitral valvuloplasty were better than during previous year and were successful in 96% of all cases; major complications occurred in 2.1% of the procedures. The most frequent complication was severe mitral regurgitation after valvuloplasty.
Baz JA et al. Spanish Cardiac Catheterization and Coronary Intervention Registry. 18th Official Report (1990-2008)

(1.6%), followed by tamponade (0.2%), and stroke (0.6%). Of 161 total percutaneous valve implantations, 10 involved the pulmonary valve and were successful in 90%, with only 1 death. The number of aortic valve implantations has already increased, with a total of 151 prosthetic valves, of which 56% were premounted on balloons and 44% were self-expanding. Self-expanding ones were successfully implanted in 91% of cases, with 8% inhospital mortality of 8%, whereas balloon-mounted ones were successful in 88% with 12% in-hospital mortality.

The treatment of congenital heart disease remained the most frequent non-coronary percutaneous intervention in the registry. A total of 635 procedures were performed: the most frequent was closure of...
of the aorta were treated. The 96 remaining procedures included ductus closure, interventricular communication closure and fistula closure.

Procedural mortality was zero, as in 2006 and 2007. In total, 211 patent foramen ovale were closed, successfully in 99% of cases, and 23 coarctations of the aorta were treated. The 96 remaining procedures included ductus closure, interventricular communication closure and fistula closure.

A total of 45 paravalvular leaks were treated, of which 32 were mitral and 13 aortic. There were 71 aortic endoprosthesis implantation procedures, 30

Figure 11. Distribution of the primary angioplasty per million population and autonomous community.

Figure 12. Distribution of hospitals according to the number of percutaneous coronary intervention procedures for acute myocardial infarction.

Figure 13. Change in the number of mitral valvuloplasty procedures in Spain.
The clinical practice guidelines on the management of AMI have led to an increase in the number of interventional procedures due to the increase in primary PCI; even so, there are very marked differences between the autonomous communities, benefiting those which have developed a specific STEMI care plan.

The use of DES increased by 0.5% compared to 2007 (national mean, 58.2%), and was widespread among the autonomous communities with a distribution similar to that of previous years.

The use of rotational atherectomy increased considerably, both in hospitals and in the number of procedures, probably due to the greater complexity of the lesions currently treated.

Use of the radial artery access route was close to 50% both for diagnosis and intervention, and was increasingly used during the acute phase of infarction.

Outside the context of PCI, there were 161 percutaneous valve implantation procedures, of which 151 were aortic valves. These figures were attained little more than 1 year after the technique was approved in Spain and this shows the willingness of Spanish interventional cardiologists to implement the latest techniques throughout the country.

Making comparisons remains problematic due to the lack of current data on the procedures performed in the countries surrounding Spain. The lack of data within Spain on the incidence of heart disease makes it difficult to assess whether the use of the different techniques matches the standards of the scientific societies.

ACKNOWLEDGMENTS

The steering committee of the Working Group on Cardiac Catheterization and Interventional

Percutaneous Coronary Intervention in Pediatric Patients

A total of 9 hospitals provided data on the pediatric age group (16 years or less), reporting 379 procedures in 2008. The most frequent procedures were dilatations, both vascular and valvular, with a total of 119 procedures. Atrial septal defect and persistent ductus arteriosus were treated in 132 patients (35% of the total). A total of 45 procedures were performed on the aorta, of which 27 were coarctations, 16 in the valve, and 2 for subaortic stenosis. Furthermore, 16 pulmonary valvuloplasty procedures were performed. The remaining procedures are shown in Figure 14.
Cardiology would like to thank all the heads of the cardiac catheterization laboratories throughout Spain, those working in them, and all those in charge of data collection for their contribution towards this registry.

REFERENCES

APPENDIX 1. Working Group on Cardiac Catheterization and Intervventional Cardiology. Data Collection Questionnaire for the Registry for 2008

0. DATA PUBLICATION AUTHORIZATION
0.1. We authorize publication on the Working Group on Cardiac Catheterization Website of data contained in the boxes marked with a * (YES/NO) (OBLIGATORY)

1. HOSPITAL IDENTIFICATION
1.1 *Hospital
1.2 Address
1.3 ZIP code
1.4 Province
1.5 Telephone
1.6 Extension
1.7 Fax
1.8 E-mail
1.9 Contact physician
1.10 Head of Laboratory
1.11 Name of interventional cardiologists who work in the laboratory
1.11.1 Name of interventional cardiologist 1
1.11.2 Name of interventional cardiologist 2
1.11.3 Name of interventional cardiologist 3
1.11.4 Name of interventional cardiologist 4
1.11.5 Name of interventional cardiologist 5
1.11.6 Name of interventional cardiologist 6
1.11.7 Name of interventional cardiologist 7
1.11.8 Name of interventional cardiologist 8
1.11.9 Name of interventional cardiologist 9

2. LABORATORY INFORMATION
2.1 Number of laboratories
2.1.1 Number of conventional laboratories
2.1.2 Number of computerized laboratories
2.2 Number of staff physicians
2.3 Number of staff physicians who perform PCI
2.4 Number of radiology technicians/registered nurses
2.5 Number of radiology technicians
2.6 24-hour emergency service
2.7 *Cardiovascular surgery available at the hospital
2.8 *Procedural activity database available

3. DIAGNOSTIC ACTIVITY
3.1 *Total number of diagnostic procedures
3.1.1 Number of diagnostic procedures
3.1.1.1 Number of diagnostic procedures in women
3.1.1.2 Number of diagnostic procedures in men
3.1.2 Number of studies in patients with valve disease
3.1.3 Number of endomyocardial biopsies
3.1.4 Number of studies in patients with congenital heart disease
3.1.5 Number of pediatric patients (<16 years)
3.1.6 Other
3.2 Number of procedures using the radial artery approach

4. OTHER DIAGNOSTIC CORONARY STUDIES
4.1 Quantitative angiogram
4.2 Number of intracoronary ultrasound studies
4.3 Number of studies using pressure guidewire
4.4 Number of studies using Doppler flow wire
4.5 Number of other studies using an invasive coronary diagnostic procedure
4.5.1 Specify:

5. INTERVENTIONAL CORONARY PROCEDURES
5.1 Total number of procedures*
5.2 Number of multivessel procedures
5.3 Number of procedures during the same session as diagnostic procedures
5.4 Number of procedures for restenosis**
5.5 Number of procedures used to treat at least one lesion in the saphenous vein
5.6 Number of procedures used to treat at least one lesion in the mammary artery
5.7 Number of procedures in the left main coronary artery
5.7.1 Protected
5.7.2 Unprotected
5.8 Number of procedures using balloon only
5.9 Number of procedures using the radial artery approach
5.10 Number of procedures using antithrombotic agents
5.10.1 Abciximab
5.10.2 Eptifibatide
5.10.3 Tirofiban
5.10.4 Bivalirudin
5.11 Number of procedures using ionic contrast media
5.12 Number of procedures using non-ionic contrast media
5.13 Number of vessels treated***
5.14 Number of lesions treated
5.15 Outcomes of interventional coronary procedures
5.15.1 Total number of successful procedures
5.15.2 Total number of failed procedures without complications
5.15.3 Total number of procedures with major complications
5.15.3.1 Nonfatal AMI
5.15.3.2 Urgent surgery (24 h)
5.15.3.3 Death secondary to the procedure performed
5.15.4 Hospital death
5.15.5 Stent thrombosis††

*The combination of right and left cardiac catheterization is considered a single diagnostic procedure, regardless of whether it is accompanied by a coronary angiogram. A complete study of a patient with valve disease who also has a coronary angiogram is counted as a single study in a patient with valve disease. A single coronary angiogram in a patient with valve disease is counted as a coronary angiogram. A biopsy in a patient with a coronary angiogram is a single procedure and should be counted as a biopsy in order to not interfere with the coronary angiogram/PCI ratio. The sum of the values in sections 3.1.1 to 3.1.6 should be equal to the value in section 3.1 (total number of procedures).

**If the information is unavailable, the box should be left blank, do not provide an estimation.

††These intracoronary studies are not counted separately within the total number of diagnostic or interventional procedures. For example, a diagnostic coronary angiogram accompanied by a study using a pressure guidewire only counts as a coronary angiogram (3.1.1) and, logically, a single diagnostic procedure (3.1) would also count as a pressure guidewire study (4.3). A PCI with IVUS is a single interventional procedure (5.1) and a study using intracoronary ultrasound (4.2).
5.15.5.1 Early stent thrombosis in conventional stent (0-30 days)
5.15.5.2 Early stent thrombosis in drug-eluting stent (0-30 days)
5.15.5.3 Late stent thrombosis in conventional stent (31-365 days)
5.15.5.4 Late thrombosis in drug-eluting stent (31-365 days)
5.15.5.5 Very late stent thrombosis in conventional stent (>365 days)
5.15.5.6 Very late stent thrombosis in drug-eluting stent (>365 days)

5.16 Number of coronary interventional procedures in women
5.17 Number of coronary interventional procedures in patients aged 75 years or more

*A therapeutic coronary procedure is defined as the attempt to treat one or more coronary lesions, provided an attempt is made to introduce a guidewire into a coronary artery. Regardless of how many devices are used in the same procedure (stent, IVUS, atherectomy, etc) it will only count as a single procedure.

**At least one of the lesions treated in a session is restenotic.

***According to convention, the following vessels are considered: left main coronary artery, anterior descending artery, circumflex artery, right coronary artery and each arterial graft (a patient with native arteries can only be treated in 4 vessels).

†††If the information is unavailable, leave the box blank.

††††We consider stent thrombosis to be definite thrombosis, that is, confirmed by angiographic or anatomic and pathological studies.

6. SUPPORT METHODS FOR INTERVENTIONAL PROCEDURES
6.1 Number of procedures using intraaortic balloon counterpulsation
6.2 Number of procedures using percutaneous cardiopulmonary bypass

7. PERCUTANEOUS CORONARY INTERVENTION FOR ACUTE MYOCARDIAL INFARCTION
7.1 *Total number procedures for AMI
7.1.1 Primary PCI*
7.1.2 Rescue PCI**
7.1.3 Facilitated PCI
7.1.3.1 Immediate facilitated PTCA***
7.1.3.2 Delayed facilitated PTCA****
7.1.4 Approximate percentage of primary PCI relative to total AMI
7.1.5 Door-to-balloon time

7.2 Outcomes of PCI for AMI (overall, including cardiogenic shock)
7.2.1 Success without complications
7.2.2 Failure without major complications
7.2.3 Procedures with major complications
7.2.4 Hospital death
7.3 Number of stent procedures
7.4 Number of procedures using balloon only
7.5 Number of procedures using GPIib/IIIa inhibitors
7.6 Number of procedures using thrombus aspiration devices
7.7 Number of procedures with distal embolization protection
7.8 Number of patients in cardiogenic shock within the first 24 h of AMI

7.9 Outcomes of PCI in patients in cardiogenic shock
7.9.1 Success without complications
7.9.2 Failure without complications
7.9.3 Procedures with major complications
7.9.4 Hospital death
7.10 Number of procedures using the radial artery approach
7.11 Number of procedures for AMI in women
7.12 Number of procedures for AMI in patients aged 75 years or more

*PTCA performed during the acute phase of AMI (first 12 h) without prior thrombolytic therapy.

**PTCA performed during the acute phase of AMI, after administration of thrombolytic therapy due to clinical suspicion of reperfusion failure of thrombolytic therapy.

***PCI performed electively in the first 3 h after the administration of thrombolytic therapy and a platelet IIb/IIIa antagonist.

****PCI performed electively between 3 h and 24 h after successful administration of thrombolytic therapy and a platelet IIb/IIIa antagonist.

††††If the information is unavailable, leave the box blank.

8. CORONARY STENTING
8.1 Total number of procedures*
8.2 Total number of stents implanted
8.3 Number of stents implanted without predilatation
8.4 Total number of procedures without predilatation**
8.5 Number of drug-eluting stents (active coating)
8.6 Number of procedures using drug-eluting stent only
8.7 Total number of procedure using conventional stent only

*The procedure is defined in the same way as the interventional procedure (5.1).

**All lesions treated without predilatation during one session.

9. OTHER DEVICES/PROCEDURES
9.1 Directional atherectomy
9.2 Rotational atherectomy
9.3 Other types of atherectomy
9.4 Coronary laser
9.5 Laser guidewire
9.6 Thrombus aspiration devices
9.7 Distal embolization protection devices
9.8 Radiofrequency balloon
9.9 Ultrasound therapy
9.10 Cutting balloon
9.11 Other special balloons (with protrusions, guidewire)
9.12 Embolization of fistulas

*These include procedures for AMI and when AMI is not present.

10. OTHER NON-CORONARY PROCEDURES/DEVICES
10.1 Transmyocardial laser
10.2 Septal branch ablation
10.3 Percutaneous transplantation of stem cells
10.4 Stenting of the aortic artery
10.4.1 Abdominal
10.4.2 Thoracic
10.5 Dilatation of renal arteries
10.6 Closure of paravalvular leaks:
10.6.1 Mitral
10.6.2 Aortic

11. PERCUTANEOUS VASCULAR_closure_DEVICES
11.1 Number of percutaneous closure devices
11.1.1 Using collagen
11.1.2 Using suture
11.1.3 Other

12. INTERVENTIONAL PROCEDURES IN ADULTS WITH VALVE DISEASE
12.1 Total number of mitral valvuloplasty procedures

Outcomes
12.1.1 Success
12.1.2 Fracaso sin complicaciones

Rev Esp Cardiol. 2009;62(12):1418-34
12.1.2 Failure without complications
12.1.3 Complications
 12.1.3.1 Cardiac tamponade
 12.1.3.2 Severe mitral regurgitation
 12.1.3.3 Stroke
 12.1.3.4 Death
12.2 Total number of aortic valvuloplasty procedures
 Outcomes
 12.2.1 Success
 12.2.2 Failure without complications
 12.2.3 Complications
 12.2.3.1 Severe aortic regurgitation
 12.2.3.2 Stroke
 12.2.3.2 Death
12.3 Total number of pulmonary valvuloplasty procedures
 Outcomes
 12.3.1 Success
 12.3.2 Failure without complications
 12.3.3 Complications
 12.3.3.1 Cardiac tamponade
12.4 Total number of percutaneous valve implantation procedures
 12.4.1 Aortic position
 12.4.1.1 Self-expanding (total number)
 12.4.1.1.1 Number of successful procedures
 12.4.1.1.2. Hospital mortality
 12.4.1.2 Not self-expanding (total number)
 12.4.1.2.1 Number of successful procedures
 12.4.1.2.2 Hospital mortality
 12.4.2 Pulmonary position
 12.4.2.1 Number of successful procedures
 12.4.2.2 Hospital mortality
13. PROCEDURES IN ADULTS WITH CONGENITAL HEART DISEASE
13.1 Number of atrial septal defect closure procedures
 13.1.1 Success
 13.1.2 Failure without complications
 13.1.3 Major complications
 13.1.3.1 Death
 13.1.3.2 Stroke
 13.1.3.3 Tamponade
13.3 Number of patent foramen ovale closure procedures
 13.3.1 Success
 13.3.2 Failure without complications
 13.3.3 Major complications
 13.3.3.1 Death
 13.3.3.2 Stroke
 13.3.3.3 Tamponade
13.4 Other procedures in adults with congenital heart disease (specify)
13.5 Specification of other procedures
14. THERAPEUTIC PROCEDURES IN PEDIATRIC PATIENTS
 (16 years or less)
 14.1 Dilatations
 14.1.1 Pulmonary valve
 14.1.2 Aortic valve
 14.1.3 Coarctation of the aorta
 14.1.4 Subaortic stenosis
 14.1.5 Pulmonary branches
 14.1.6 Other dilatations
 14.2 Stent implantations
 14.2.1 Pulmonary artery branches
 14.2.2 Coarctation of the aorta
 14.2.3 Ductus
 14.2.4 Other locations
 14.3 Atrial septostomy
 14.3.1 In the ICU
 14.3.2 In the catheterization laboratory
 14.4 Ductal closure
 14.4.1 Pulmonary artery branches
 14.4.2 Coarctation of the aorta
 14.4.3 Ductus
 14.4.4 Other locations
 14.5 Atrial septal defect closure
 14.6 Embolizations
 14.7 Other
15. OBSERVATIONS AND COMMENTS
APPENDIX 2. Registry of Activity of the Working Group on Cardiac Catheterization and Interventional Cardiology. Laboratories Participating in 2008

<table>
<thead>
<tr>
<th>Andalucía</th>
<th>Almería</th>
<th>Complejo Hospitalario Torrecárdenas</th>
<th>Hospital Virgen del Mar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cádiz</td>
<td></td>
<td>Hospital Universitario Puerta del Mar</td>
<td>Hospital Universitario Puerto Real</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital de Jerez de la Frontera</td>
<td>Clínica Ntra. Sra. de la Salud</td>
</tr>
<tr>
<td>Córdoba</td>
<td>Granada</td>
<td>Hospital Universitario Reina Sofía</td>
<td>Hospital Universitario Virgen de las Nieves</td>
</tr>
<tr>
<td>Huelva</td>
<td>Jaén</td>
<td>Hospital Juan Ramón Jiménez</td>
<td>Complejo Hospitalario Universitario de Jaén</td>
</tr>
<tr>
<td>Málaga</td>
<td></td>
<td>Complejo Universitario Carlos Haya</td>
<td>Hospital Clínico Universitario Virgen de la Victoria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Costa del Sol</td>
<td>Clínica Xanit Internacional de Benalmádena</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clínica Parque San Antonio</td>
<td>Clínica El Ángel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Estepona</td>
<td>Clínica Santa Elena</td>
</tr>
<tr>
<td></td>
<td>Seville</td>
<td>Hospital Universitario Virgen del Rocio</td>
<td>Hospital Universitario Virgen Macarena</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Universitario de Valme</td>
<td>Hospital Universitario de Malve</td>
</tr>
<tr>
<td>Aragón</td>
<td>Zaragoza</td>
<td>Hospital Clínico Universitario Lozano</td>
<td>Blesa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Universitario Miguel Server</td>
<td>Hospital Central de Asturias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Son Dureta</td>
<td>Centro Médico de Asturias</td>
</tr>
<tr>
<td></td>
<td>Balearic Islands</td>
<td>Mallorca</td>
<td>Policlínica Miramar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clínica Rotger</td>
<td>Clínica Palmaplanas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clínica Juaneda</td>
<td>Clínica Ntra. Sra. del Rosario</td>
</tr>
<tr>
<td></td>
<td>Canary Islands</td>
<td>Ibiza</td>
<td>Hospital de Gran Canaria Dr. Negrín</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Universitario Insular de Gran Canaria</td>
<td>Clínica San Roque</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Universitario de Canarias</td>
<td>Complejo Hospitalario Ntra. Sra. de la Candelaria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Rambla</td>
<td>Hospital Universitario Marqués de Valdecilla</td>
</tr>
<tr>
<td></td>
<td>Cantabria</td>
<td></td>
<td>Hospital Clínico Universitario de Valladolid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Campo Grande (CEMIN)</td>
<td>Hospital General Yagüe</td>
</tr>
<tr>
<td>Castilla y León</td>
<td>Valladolid</td>
<td></td>
<td>Hospital Virgen de la Salud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital Universitario de Salamanca</td>
<td>Hospital General de Albacete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital de León</td>
<td>Iberica de Diagnostico y Cirugía S.L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital General de Albacete</td>
<td>Hospital Universitario Guadalajara</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hospital de Burgos</td>
<td>Hospital General de Ciudad Real</td>
</tr>
</tbody>
</table>

Cataluña	Barcelona	Ciutat Sanitària i Universitària de Bellvitge
Pujol	Hospital del Mar	
Girona	Hospital Universitari Sagrat Cor-ANGIOCOR	
Terragona	Mútua de Terrassa	
Lleida	Centre Médico Delfos	
Community of Madrid	Hospital Universitari Dr. Josep Trueta	
Hospitalario	Hospital Juan XXIII	
Marañón	Hospital Universitario Arnau de Vilanova	
	Hospital Puerta de Hierro	
	Hospital Universitario 12 de Octubre	
	Hospital Clínico San Carlos, Complejo	

Andalucía	Almería	Hospital General de Almería
Balearic Islands	Mallorca	Hospital Clínico Universitario de Majorca
Canary Islands	Las Palmas	Hospital Universitario Insular de Gran Canaria
Castilla-La Mancha	Toledo	Hospital General de Toledo
	Albacete	Hospital General de Albacete
	Guadalajara	Hospital Universitario Guadalajara
	Ciudad Real	Hospital General de Ciudad Real

Andalucía	Almería	Hospital Virgen del Mar	
Cádiz		Hospital Universitario Puerta del Mar	
Córdoba	Granada	Hospital Universitario Reina Sofía	
Huelva	Jaén	Hospital Juan Ramón Jiménez	
Málaga		Complejo Universitario Carlos Haya	
	Seville	Hospital Universitario Virgen del Rocio	
Aragón	Zaragoza	Hospital Clínico Universitario Lozano	
		Hospital Universitario Miguel Server	
	Balearic Islands	Mallorca	Policlínica Miramar
		Clínica Rotger	
	Canary Islands	Ibiza	Clínica Ntra. Sra. del Rosario
		Hospital de Gran Canaria Dr. Negrín	
		Hospital Universitario Insular de Gran Canaria	
		Hospital Universitario de Canarias	
		Hospital Rambla	
Castilla y León	Valladolid	Hospital Clínico Universitario de Valladolid	
		Hospital Campo Grande (CEMIN)	
		Hospital Universitario de Salamanca	
		Hospital de León	
		Hospital General de Albacete	
		Hospital Universitario Guadalajara	
		Hospital General de Ciudad Real	

Andalucía	Almería	Hospital Virgen del Mar
Cádiz		Hospital Universitario Puerta del Mar
Córdoba	Granada	Hospital Universitario Reina Sofía
Huelva	Jaén	Hospital Juan Ramón Jiménez
Málaga		Complejo Universitario Carlos Haya
	Seville	Hospital Universitario Virgen del Rocio
Aragón	Zaragoza	Hospital Clínico Universitario Lozano
		Hospital Universitario Miguel Server
Balearic Islands	Mallorca	Hospital Clínico Universitario de Majorca
Canary Islands	Las Palmas	Hospital Universitario Insular de Gran Canaria
Castilla-La Mancha	Toledo	Hospital General de Toledo
	Albacete	Hospital General de Albacete
	Guadalajara	Hospital Universitario Guadalajara
	Ciudad Real	Hospital General de Ciudad Real

Andalucía	Almería	Hospital Virgen del Mar
Cádiz		Hospital Universitario Puerta del Mar
Córdoba	Granada	Hospital Universitario Reina Sofía
Huelva	Jaén	Hospital Juan Ramón Jiménez
Málaga		Complejo Universitario Carlos Haya
	Seville	Hospital Universitario Virgen del Rocio
Aragón	Zaragoza	Hospital Clínico Universitario Lozano
		Hospital Universitario Miguel Server
Balearic Islands	Mallorca	Hospital Clínico Universitario de Majorca
Canary Islands	Las Palmas	Hospital Universitario Insular de Gran Canaria
Castilla-La Mancha	Toledo	Hospital General de Toledo
	Albacete	Hospital General de Albacete
	Guadalajara	Hospital Universitario Guadalajara
	Ciudad Real	Hospital General de Ciudad Real

Andalucía	Almería	Hospital Virgen del Mar
Cádiz		Hospital Universitario Puerta del Mar
Córdoba	Granada	Hospital Universitario Reina Sofía
Huelva	Jaén	Hospital Juan Ramón Jiménez
Málaga		Complejo Universitario Carlos Haya
	Seville	Hospital Universitario Virgen del Rocio
Aragón	Zaragoza	Hospital Clínico Universitario Lozano
		Hospital Universitario Miguel Server
Balearic Islands	Mallorca	Hospital Clínico Universitario de Majorca
Canary Islands	Las Palmas	Hospital Universitario Insular de Gran Canaria
Castilla-La Mancha	Toledo	Hospital General de Toledo
	Albacete	Hospital General de Albacete
	Guadalajara	Hospital Universitario Guadalajara
	Ciudad Real	Hospital General de Ciudad Real
Hospitals with different pediatric activity

<table>
<thead>
<tr>
<th>Region</th>
<th>Hospital Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castellón</td>
<td>Hospital General de Castellón</td>
</tr>
<tr>
<td>Valencia</td>
<td>Hospital Clínico Universitario de Valencia</td>
</tr>
<tr>
<td></td>
<td>Hospital General Universitario de Valencia</td>
</tr>
<tr>
<td></td>
<td>Hospital Universitario La Fe</td>
</tr>
<tr>
<td></td>
<td>Hospital Dr. Peset</td>
</tr>
<tr>
<td></td>
<td>Hospital de la Ribera</td>
</tr>
<tr>
<td></td>
<td>Hospital 9 de Octubre</td>
</tr>
<tr>
<td></td>
<td>Clínica Virgen del Consuelo</td>
</tr>
<tr>
<td></td>
<td>Clínica Casa Salud</td>
</tr>
<tr>
<td>Castellón</td>
<td>Hospital General de Castellón</td>
</tr>
<tr>
<td>Castellón</td>
<td>Hospital Universitario Virgen de la Arrixaca</td>
</tr>
<tr>
<td>Castellón</td>
<td>Hospital Santa María del Rosell</td>
</tr>
<tr>
<td>Extremadura</td>
<td>Hospital Clínico de Cáceres</td>
</tr>
<tr>
<td>Extremadura</td>
<td>Hospital Universitario Infanta Cristina</td>
</tr>
<tr>
<td>Galicia</td>
<td>Hospital Universitario Universitario de A Coruña</td>
</tr>
<tr>
<td>Galicia</td>
<td>Complexo Hospitalario Universitario de Santiago</td>
</tr>
<tr>
<td>Galicia</td>
<td>Clínica USP Santa Teresa</td>
</tr>
<tr>
<td>Galicia</td>
<td>Instituto Médico Quirúrgico</td>
</tr>
<tr>
<td></td>
<td>San Rafael</td>
</tr>
<tr>
<td>Galicia</td>
<td>Complexo Hospitalario Universitario de A Coruña</td>
</tr>
<tr>
<td></td>
<td>Instituto Médico Quirúrgico</td>
</tr>
<tr>
<td></td>
<td>San Rafael</td>
</tr>
<tr>
<td>Region</td>
<td>Hospital Vall d’Hebron</td>
</tr>
<tr>
<td>Region</td>
<td>Hospital de Valdés</td>
</tr>
<tr>
<td>Region</td>
<td>Hospital Reina Sofia</td>
</tr>
<tr>
<td>Region</td>
<td>Hospital Universitario de Canarias</td>
</tr>
<tr>
<td>Region</td>
<td>Hospital Insular de Gran Canaria</td>
</tr>
<tr>
<td>Region</td>
<td>Complexo Hospitalario Universitario de A Coruña</td>
</tr>
<tr>
<td>Region</td>
<td>Hospital Universitario Son Dureta</td>
</tr>
</tbody>
</table>