Percutaneous Closure of Patent Ductus Arteriosus in Adults Using Different Devices

Ricardo Gamboa, Raúl E. Rios-Méndez, Francisco P. Mollón, Graciela M. Arroyo, and Diego F. Gutiérrez

Sección de Cardiología Infantil, Hospital Universitario, Fundación Favaloro, Buenos Aires, Argentina

Surgical closure of patent ductus arteriosus in adults involves a number of risks because there are associated anatomic and histologic alterations. Between October 1992 and August 2008, 23 patients were referred to our department with isolated patent ductus arteriosus. Their age ranged from 16-75 years (median 25.5 years) and their weight from 52-80 kg (median 57 kg). The pulmonary diameter ranged from 1.8-5.8 mm (mean 3.5 mm), and pulmonary artery pressure, from 9-72 mmHg (mean 15 mmHg). The rate of ductal occlusion achieved with the Rashkind patent ductus arteriosus occluder was 85.7%, and it was 100% with the Amplatzer duct occluder and the Nit-Occlud coil. The average hospitalization time and follow-up duration were 24 hours and 2 years, respectively. The only immediate complication was an inguinal hematoma, and there were no late complications. In adults, closure of patent ductus arteriosus using a number of different devices, especially the latest generation devices, was safe and effective, regardless of morphologic and histologic characteristics.

Key words: Ductus arteriosus. Congenital heart disease. Cardiac catheterization. Adults.

INTRODUCTION

Surgical repair of patent ductus arteriosus (PDA) in adults is performed by left lateral thoracotomy, but may require a midline sternotomy, extracorporeal circulation, aortic cross-clamping, and other measures, with recovery in an intensive care unit. Surgical risk may be further increased by anatomic and histologic changes in the ductus, including calcification, aneurysm, diverticulum, shortening, and friability and, therefore, percutaneous occlusion as a first-line treatment is a valid option. If left untreated, PDA can foster the development of infective endarteritis, Eisenmenger syndrome, and other conditions, with an annual mortality rate of 1.8%.

We report our experience with percutaneous treatment of PDA in adults using 3 different types of devices.

METHODS

A cross-sectional, retrospective, descriptive study was carried out between October 1992 and August 2008, including 23 patients (17.4% men). All patients were referred to our department for isolated PDA diagnosed by clinical symptoms, echocardiography and, in some cases, catheterization. Median patient age was 24 years (range, 16-75) and median weight was 57 kg (range, 52-80).
PDA repair was undertaken with the Rashkind-PDA (RAS) umbrella device in 9 patients; the cone-shaped Amplatzer Duct-Occluder (ADO) in 12, and the Nit-Occlud coil (NOc) in 2. All patients were followed up by clinical examination, radiologic study, and echocardiography.

Written informed consent was obtained for participation. In keeping with the protocol for these patients, general anesthesia was administered, introducer sheaths were positioned in the femoral artery and vein, and 5000 U of sodium heparin and intravenous antibiotic prophylaxis were administered. A single device, advanced from the femoral vein, was implanted in all patients. A hemodynamic study was performed, followed by thoracic aortography (right cephalic oblique and/or lateral projection using a 5-French pigtail catheter), in which the aortic and pulmonary artery diameters and the PDA length were measured. RAS devices of 12 and 17 mm were used for PDAs smaller than and larger than 2.5 mm, respectively, the ADO chosen was 2 mm larger than the smallest ductal diameter, and the NOc was selected using the manufacturer’s chart. Ten minutes after implantation, follow-up aortic angiography was performed (Figures 1 and 2).

RESULTS

The PDA types observed in the study included type A (69.6%), type C (8.7%), type E (17.4%), and filiform (4.3%); 2 had wall calcification. The mean pulmonary artery pressure was 9-72 mmHg (mean, 15 mmHg), and the pulmonary and aortic artery diameters of the PDA were 1.8-5.8 (mean, 3.5) and 9-17 mm (mean, 15 mm), respectively. In the RAS group, occlusion was ruled out in 1 patient who had a mean pulmonary artery pressure of 72 mmHg with negative results in the balloon occlusion and 100% O₂ test. The procedure was successfully completed in 7 of the 8 remaining cases, yielding an intention-to-treat success rate of 87.5%. In the patient with filiform PDA, the procedure failed because the diameter did not allow catheter advancement to implant a coil.
device for ductal occlusion in adults because it is not available in our setting. Nor do we have experience with Gianturco coils because of the higher risk of migration and persistent residual shunt or the Amplatzer Muscular VSD occluder, which has been successfully used in patients with pulmonary hypertension.

As has been reported in other studies, we also observed a high percentage of residual shunt in patients receiving the NOc, although the rate of postprocedure occlusion on immediate follow-up was substantially higher. We do not use this device in large PDAs (>4 mm) because of the greater probability of residual shunt or migration, although the manufacturer recommends it for PDAs with a diameter of up to 5 mm. In these cases, we prefer the ADO, which does not have these drawbacks.

At the start of our experience (RAS group), 1 patient presented severe pulmonary hypertension with negative occlusion and hyperoxygenation tests; therefore, ductal closure was considered contraindicated. Nonetheless, current articles on the use of pulmonary vasodilator medication in patients with pulmonary hypertension and congenital heart disease report encouraging results.

In our series, percutaneous closure of PDA in adults using several types of devices designed for this purpose, especially late-generation devices, was safe and effective, regardless of the morphologic and histologic characteristics of the defect.

REFERENCES

TABLA 1. Variables Related to the Devices and Occlusion Rate Progression

<table>
<thead>
<tr>
<th>Implant Devices</th>
<th>Diameter, French</th>
<th>Occlusion</th>
<th>Follow-up, y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Immediate</td>
<td>At 24 Hours</td>
<td>At Month 3</td>
</tr>
<tr>
<td>RAS</td>
<td>7</td>
<td>8-12</td>
<td>57.1%</td>
</tr>
<tr>
<td>ADO</td>
<td>12</td>
<td>6-7</td>
<td>75%</td>
</tr>
<tr>
<td>NOc</td>
<td>2</td>
<td>6</td>
<td>50%</td>
</tr>
</tbody>
</table>

ADO indicates Amplatzer-Duct Occluder; NOc, Nit-Occlud coil; RAS, Rashkind-PDA.

