Editorial

Scientific Societies and Biomedical Research

Sociedades científicas e investigación biomédica

Fausto J. Pinto*

Centro de Cardiologia da Universidade de Lisboa (CCUL), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal

Article history:
Available online 10 August 2011

The role of scientific societies in the promotion of biomedical research is becoming increasingly important, particularly when the political and financial situations across Europe (and the world) are facing unprecedented challenges. The whole field of biomedical research in Europe is therefore in a difficult position, considering that research is usually one of the first victims of global crisis. Some signs are already quite visible. Indeed, funding and support for research are far below that which has long been promised and is needed for sustained European competitiveness and innovations in biomedicine. The commitment by the European Union (EU) in 2002 (Barcelona Declaration) to gradually increase the share that the EU dedicates to research and development (R&D) to 3% of its gross domestic product (GDP) by 2010 has not been fulfilled. Currently the EU budget for research amounts to only 1.8% of its GDP. Furthermore, statistics recently published by the United Nations Educational, Scientific and Cultural Organization showed that from 2002 to 2007 European investment had stagnated. This is clearly in contrast with the main European competitors, the United States (US) or Japan, who dedicate 2.7% and 3.4%, respectively, of GDP to R&D. In addition, China is investing massively in R&D, with a 160% increase in investment between 2002 and 2007, representing 1.75% of GDP, and a plan to increase to 2.2% of GDP by 2015.

Adequate funding is, therefore, critical for continued advancement in cardiovascular disease research. As an example of disparities, Framework Programme 7, the main European Program for Research Grants, receives 6 billion Euros, some 10% of the total 2008–2013 research budget. By comparison, the National Institutes of Health (NIH) budget was approximately $30 billion in 2008, with about $3 billion directed toward the National Heart, Lung, and Blood Institute, the institute most directly involved with cardiovascular research. An important consideration that is also increasingly relevant is to assess the return on investment, which can be looked at in different ways. One of them is certainly in terms of the quality and quantity of research publications that originate from the funded research, particularly the ones in high impact journals, which in the end will have much wider visibility and potential impact. In a recent study Lyubarova et al. assessed the impact of NIH funding on published US cardiovascular disease research. By including 36 684 US articles on cardiovascular disease published during the 11-year study period, the data set was very comprehensive. The US accounted for about one third of worldwide publications on cardiovascular disease, with a relative emphasis on large clinical trials and review articles. The NIH funded 28% of US articles, with an emphasis on basic science research. Most large US clinical trials received alternative funding, typically from industrial sources. Multiple-method NIH-funded studies were more likely to be published in high impact journals. Both overall US cardiovascular publications and NIH-funded publications increased, but at roughly equivalent rates such that the ratio between the two was stable. The National Heart, Lung, and Blood Institute was by far the dominant institute funding cardiovascular research, but growth from the National Institute of Biomedical Imaging and Bioengineering was unexpectedly strong, suggesting a growing federal interest in cardiac imaging.

Another important source of research support comes from industry, with a substantial amount being used to conduct clinical trials. Despite the US strength in large clinical trials, the NIH was less involved in sponsoring this type of research. While 28% of overall US cardiovascular articles were NIH-funded, only 20.3% of clinical trials and 12.2% of multicenter trials received NIH sponsorship. The prohibitive cost of these trials may have left this task to parties with the wealth and incentive to support them, namely industry. In the general biomedical literature, industrial support is twice that of the NIH. Large clinical trials most directly and immediately impact clinical practice. Significant industry financing can improve and accelerate existing research and support ideas that might not otherwise be funded. On the other hand, conflicts of interest and bias are important considerations when the sponsoring party has a financial interest in the research results.

The current situation also reflects the fragmented allocation and complicated decision-making processes where scientists are not major participants in the process. The creation of the Alliance for Biomedical Research, which includes 4 of the largest scientific societies in Europe—the European Association for the Study of Diabetes, European Cancer Organization, European Respiratory Society, and European Society of Cardiology—is an important step forward in promoting the close involvement of the scientific community in the policymaking process.

Considering the above mentioned, it is clear that the added value of the scientific societies in supporting and promoting biomedical research is of paramount (if not vital) importance, particularly in those countries that traditionally have more

SEE RELATED ARTICLE:
* Corresponding author: Dpt. Cardiologia, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
E-mail address: faustopinto@fm.ul.pt

1885-5857/$ – see front matter © 2011 Sociedad Española de Cardiología. Published by Elsevier España, S.L. All rights reserved.
difficulties in getting access to more centralized grants. This is why
the study that was published in Revista Española de Cardiología7 is
very important. In this study, Aleixandre Benavent et al. assessed
the impact of the grants provided by the Spanish Society of
Cardiology in the 2000-2006 award period. The methodology
consisted in identifying and quantifying the publications that
resulted from these grants. The overall conclusion is that 60% of the
grants led to publications, and in 91% of the cases in national or
international journals with an impact factor. One of the main
advantages of this study is to provide objective data on how the
money given to researchers translates into publications (one of the
measurements that can objectively assess how science is being
produced). It is quite relevant to observe that only a few studies
with similar purposes have been done and even those used
different methodologies and different approaches. The results from
the present study, though positive, still show that a substantial
part of the supported research programs never sees the light of
day in the form of a scientific publication. Overall these results
are consistent and similar to what has been described by other studies
that have done similar analysis.

It is clear that scientific societies promote research in different
ways, including awarding research grants. In Europe as a whole,
there are European sources of research grants, mostly through the
Framework Programmes or the European Research Council. At the
national level there are also public grants, usually provided by
governmental bodies (such as the Fondo de Investigación Sanitarian
in Spain), and those provided by scientific societies (such as
the Spanish Society of Cardiology). During the studied period
(2000-2006) an average of €470 000 was awarded by the
Spanish Society of Cardiology in comparison with an average of
€3.2 million granted by the Spanish government. There is an
obvious need to assess the relevance and the impact of spending
money to support research, and one of the surrogates is certainly
the scientific output quantified in the number of scientific articles
published in high-ranking journals. In other countries this has been
done using a variety of parameters; for example, in a speech
given at the 2006 American Heart Association national meeting,
Dr. Elias A. Zerhouni, Director of the NIH at that time, emphasized
the tremendous benefit derived from prior government funding of
clinical research.3 Using coronary artery disease as an example,
NIH-funded research has prevented one million early deaths at a
cost of $3.70 per American per year. Despite these proven benefits,
the likelihood of an investigator obtaining NIH research funding
dropped by a third from 2003 to 2006.8 From 2003 to 2008, NIH
budgets stagnated, and even declined in terms of actual purchasing
power.9,10

As mentioned in a recent document produced by a group of
European researchers: “Translational research in the cardiovascular
field must be seen as a re-iterative process among basic,
experimental, and clinical research, in partnership with industry.
There is a strong need of support for clinical investigator-driven
research, not as a stand-alone entity but as a component of this re-
iterative process, including basic experimental research.”11 It is
obvious that several levels of support are needed in order to promote
a consistent and robust research strategy as defined. The existence
of transnational networks supported by large grants is essential to
develop science at a large scale. On the other hand, there is also a
need to support the development of smaller research projects, less
ambitious but equally important to build up national projects and
also improve the knowledge about local realities that is otherwise
impossible to obtain. It is clear that national scientific societies
have an important and unique role to play in sponsoring this type of
research. There is an essential need to monitor and assess how this
support translates into results so the societies can have a better
understanding of the return on investment. Studies like the one
published in this issue represent an important contribution to fulfill
these goals and should be regularly done under the supervision of
national (or international) societies.

CONFLICTS OF INTEREST

None declared.

REFERENCES

1. Smith U, Sipido K, Dive C, Nicod L; Alliance for Biomedical Research. Medical
2. The National Institutes of Health. NIH Almanac-Appropriations [cited
27/06/11]. Available at: http://www.nih.gov/about/almanac/appropriations/
index.htm.
3. Lyubarova R, Itagaki BK, Itagaki MW. The impact of National Institutes of Health
4. Moses 3rd H, Dorsey ER, Matheson DH, Thier SO. Financial anatomy of biomedical
5. Ridker PM, Torres J. Reported outcomes in major cardiovascular clinical trials
funded by for-profit and not-for-profit organizations: 2000-2005. JAMA.
6. Kjaergard LL, Als-Nielsen B. Association between competing interests and
authors’ conclusions: epidemiological study of randomised clinical trials
published in the BMJ. BMJ. 2002;325:249.
7. Aleixandre Benavent R, Alonso Arroyo A, Anguita Sánchez M, Bolaños Pizarro M,
de las becas de investigación de la Sociedad Española de Cardiología y la Fundación
9. Heining SJ, Krakower JY, Dickler HB, Korn D. Sustaining the engine of U.S.
10. Steinbrook R. The NIH Stimulus—The Recovery Act and biomedical research.
11. Sipido KR, Tedgui A, Kristensen SD, Fuster V, Schunkert H, Wehling M,
et al. Identifying needs and opportunities for advancing translational research