Special article

Update on Cardiac Imaging Techniques 2012

José J. Gómez de Diego, a,∗ Rocío García-Orta, b Patricia Mahía-Casado, c Joaquín Barba-Cosials, d and Jaume Candell-Riera e

a Servicio de Cardiología, Hospital Clínico San Carlos, Madrid, Spain
b Servicio de Cardiología, Hospital Virgen de las Nieves, Granada, Spain
c Servicio de Cardiología, Hospital Carlos III, Madrid, Spain
d Departamento de Cardiología, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
e Servicio de Cardiología, Hospital Vall d’Hebron, Barcelona, Spain

Article history:
Available online 15 January 2013

Keywords:
Echocardiography
Nuclear cardiology
Computed tomography
Magnetic resonance imaging

A B S T R A C T

Cardiac imaging is one of the basic pillars of modern cardiology. The potential list of scenarios where cardiac imaging techniques can provide relevant information is simply endless so it is impossible to include all relevant new features of cardiac imaging published in the literature in 2012 in the limited format of a single article. We summarize the year’s most relevant news on cardiac imaging, highlighting the ongoing development of myocardial deformation and 3-dimensional echocardiography techniques and the increasing use of magnetic resonance imaging and computed tomography in daily clinical practice.

© 2012 Sociedad Española de Cardiología. Published by Elsevier España, S.L. All rights reserved.

Novedades en imagen cardíaca 2012

R E S U M E N

La imagen cardíaca es uno de los pilares de la cardiología actual. La cantidad de situaciones en que las técnicas de imagen aportan información importante en clínica o investigación es sencillamente interminable, por lo que es imposible recoger en el formato reducido de un artículo todas las novedades importantes sobre imagen cardíaca que han aparecido en la literatura médica en el año 2012. Resumimos las publicaciones más importantes del año, entre las que destacan el desarrollo progresivo de las técnicas de deformación miocárdica y la ecocardiografía tridimensional y la incorporación creciente al trabajo clínico diario de la resonancia magnética y la tomografía computarizada.

© 2012 Sociedad Española de Cardiología. Publicado por Elsevier España, S.L. Todos los derechos reservados.

Abbreviations

Cardiac CT: cardiac computed tomography
SPECT: single-photon emission computed tomography

ECHOCARDIOGRAPHY

Update on Echocardiography

The most important publication of the year deals with the criteria for appropriate use 1 and represents a major drive to use this technique rationally.

Technically, the major innovation is the progressive introduction of pocket-size hand-held devices. A consensus document has been published that specifies the indications and type of training recommended for their use, 2 while different studies have shown their usefulness in clinical practice 3 and in teaching. 4 In the foreseeable future, the number of these devices will increase rapidly and they will even be linked with smartphone applications. 5

This year has seen a discreet revival in the use of backscatter signal, which can characterize tissues from the echocardiographic image. For example, in patients with hypertrophic cardiomyopathy, cyclical variation of the backscatter signal can be useful in predicting events, 6 whereas in dilated cardiomyopathy it can predict inverse remodeling and the degree of fibrosis. 7

No major innovation has appeared in other fields. A tool to determine the properties of myocardial contractility has been developed, based on so-called shear wave imaging, 8 and analytical systems are being created to study left ventricular rotation dynamics. 9 A system enabling us to follow contrast bubbles in order to analyze intracavity flow has also been developed. 10

Stress Echocardiography

In dobutamine stress echocardiography, the troponin concentration is not elevated so its use provides no additional information to help interpret the studies; therefore, it is not recommended. 11 Stress echocardiography itself has shown that studying images of peak treadmill exercise is the most sensitive approach as it enables us to see ischemia most frequently and most extensively. 12 It has

Copyright and Re-use: © 2012 Sociedad Española de Cardiología. Published by Elsevier España, S.L. All rights reserved. http://dx.doi.org/10.1016/j.rec.2012.10.005
also been shown that a significant proportion of patients with exertional dyspnea and normal ejection fraction (EF) have relevant diastolic dysfunction only during exercise, hence they would be not be identified by the criteria in current clinical practice guidelines.

Contrast Media

Transesophageal echocardiography (TEE) continues to be superior to cardiac computed tomography (cardiac CT) in the diagnosis of patent foramen ovale. However, TEE is less sensitive than transesophageal echocardiography (TTE) and transcranial Doppler and tends to underestimate shunt. Use of contrast enables us to determine the presence of microvascular damage in acute coronary syndrome and this damage has been shown to be reversible, which associates it with a favorable prognosis. Contrast media have been combined with exertion in new techniques like 3-dimensional (3D) echocardiography and with new drugs like regadenoson in myocardial perfusion studies. Finally, new data have appeared which confirm that contrast perfusion studies add important prognostic information to pharmacologic stress tests.

Interventional Cardiology

Interventional cardiology in structural heart disease has grown considerably, with increasing use of imaging techniques in selecting suitable patients and procedure monitoring. The European Association of Cardiovascular Imaging (before European Association of Echocardiography) and the American Society of Echocardiography have prepared a joint document of recommendations for the use of echocardiography in these procedures which particularly highlights the value of 3D TEE (Fig. 1). Together with transcatheter aortic valve implantation, the other innovation is percutaneous atrial appendage occlusion, in which the opportunity to use 3D TEE improves results.

VALVULAR HEART DISEASE

Aortic Valve

The debate about low-flow low-gradient aortic stenosis with normal EF continues. In a new prospective study, patients with this pattern presented more severe stenosis and data indicating incipient ventricular infection with reduced longitudinal strain, which would explain their poor prognosis.

One relatively new topic is the evaluation of pulmonary hypertension associated with aortic stenosis, which is found in <30% of patients. The appearance of pulmonary hypertension with exercise in patients with severe asymptomatic aortic stenosis has prognostic value, hence it could be useful when making decisions on surgery. Pulmonary hypertension is associated with greater mortality in patients undergoing valve replacement, although the degree of pulmonary pressure does not condition mortality and in the presence of elevated capillary pressure can decline after valve replacement.

Mitral Valve

In the field of rheumatic mitral stenosis, an interesting index has been described. The > 50% ratio between posterior and anterior leaflet length is an excellent predictor of good results in valvuloplasty (Fig. 2).

Figure 1. Three-dimensional transesophageal echocardiography in structural intervention. The image shows a mechanical mitral valve from the atrial side, with three closure devices (arrows) deployed to treat a perivalvular leak.

Figure 2. Transthoracic echocardiography. Typical opening movement in mitral valve stenosis and the method of measuring the maximum length of the mitral leaflets: A, mitral annulus length; B, anterior leaflet; C, posterior leaflet.
Tricuspid Valve

Two new studies of patients undergoing degenerative mitral regurgitation repair or replacement for rheumatic mitral stenosis have shown that, although the mild-to-moderate tricuspid regurgitation repair entailed is not accompanied by clear differences in the rates of mortality or need for new surgery, patients without tricuspid valve repair presented greater incidence of moderate-to-severe tricuspid regurgitation in the follow-up and worse event-free survival, which means that adding tricuspid valve repair to mitral valve surgery is recommendable.

Prosthetic Valves

Two new, relatively simple parameters have been identified (acceleration time >100 ms and acceleration time/ejection time ratio >0.37 ms) that help detect prosthetic aortic valve stenosis.

LESIONS OF THE AORTA

Young patients with stroke attributable to patent foramen ovale present larger aortic root diameters than healthy control subjects, which indicates a possible relationship to aortic dilatation. In patients with severe aortic stenosis, a relationship exists between the complex atherosclerotic plaque in the aortic arch and cerebral infarction after hemodynamic study or valve replacement.

VENTRICULAR FUNCTION

Study of the ventricular mechanism using deformation parameters continues to develop apace despite its slow implantation in daily clinical practice. The publication of an excellent review article on its usefulness in coronary disease, which clearly summarizes its possible applications, stands out. On the other hand, the problem of reproducibility and the standardization of these parameters is being toned down by the recent publication of the normal reference values. New tools based on 3D strain have shown its usefulness in studying ventricular function and volume, although their comparative reproducibility by teams from different commercial companies is again its principle limitation. Promising new parameters have appeared, for example area strain (Fig. 3), which combines the longitudinal and circumferential deformations. Initial reports evaluate its usefulness in studying ventricular function.

CARDIOMYOPATHY

The need to combine information from different imaging techniques has been made clear and deformation parameters have been shown to be useful in several conditions. In patients with hypertrophic cardiomyopathy, simple parameters such as global strain have been proven to be independent predictors of the presence of fibrosis and the risk of adverse events. Deformation parameters could also be useful in cardiomyopathy secondary to chemotherapy, in which early decrease in longitudinal strain has been related with cardiotoxicity at 6-month follow-up.

HEART FAILURE AND RESYNCHRONIZATION

The role of echocardiography in diagnosing heart failure is reflected in the new European Society of Cardiology guidelines, which highlight the method of calculating EF and emphasize the usefulness of contrast media, 3D echocardiography and deformation techniques in the evaluation of ventricular function.

NUCLEAR CARDIOLOGY

The technical advances aimed at reducing acquisition time and radiation dose and improving image quality with cardiac-dedicated single-photon emission computed tomography (SPECT) cameras are being held back in Spain as a consequence of the current economic crisis. Partly for the same reason, positron emission tomography (PET) has not become established in Spain despite the proliferation of PET-CT cameras in oncology.

A substantial number of more recent articles have focused on studying gated myocardial perfusion SPECT in subgroups of asymptomatic patients: with diabetes, advanced kidney failure, a family history of early heart disease, and as a preoperative evaluation. The use of SPECT with this patient type is not in the guidelines and constitutes one of the most frequent inappropriate uses of the technique. This is of special interest if we consider that the impact of noninvasive exploration in therapeutic strategy is only relative.

The use of 123I-metiodobenzyl guanidine scintigraphy to study sympathetic innervation continues to be considered in the risk stratification of patients with heart failure. Severe arrhythmic
Figure 4. Fourier analysis of a gated myocardial perfusion single-photon emission computed tomography. Before resynchronization (A), the phase histogram amplitude increases abnormally. The polar map (B) shows that the greatest delay occurs in the inferior-lateral region of the left ventricle. After cardiac resynchronization therapy (C), the histogram amplitude (D) improves significantly. The patient improved clinically and left ventricular ejection fraction improved from 18% to 32% lower. (Images courtesy of Dr. Santiago Aguadé-Bruix, Hospital Universitari Vall d’Hebron, Barcelona.)

CARDIAC COMPUTED TOMOGRAPHY

Cardiac CT is now firmly established in clinical practice. With the publication of the CONFIRM study,75 a register with data on >25,000 patients showing a clear relationship between the presence and severity of coronary disease diagnosed with cardiac CT and mid-term mortality, the debate over its prognostic value has ended (Fig. 6).

Developments in cardiac CT advance at a tremendous pace. As a technique, it has been shown to be as precise as cardiac magnetic resonance imaging in the assessment of ventricular function.76 An interesting mathematical model has been developed that is capable of noninvasively deriving coronary fractional flow reserve and promises to improve CT performance in coronary disease.77 Moreover, the application of late iodine enhancement is useful in the etiologic diagnosis of dilated cardiomyopathy.78

In clinical practice, two very interesting articles have been published in the New England Journal of Medicine about the usefulness of cardiac CT in assessing the patient with chest pain attending the emergency department. Computed tomography has been shown to be a safe technique that facilitates the diagnosis of a larger number of patients who really have coronary disease and leads to a shorter stay in Emergency and a higher number of direct discharges.79,80 Also this year, the first study appeared with evidence that treatment of asymptomatic patients with baseline risk identified by cardiac CT can reduce the appearance of coronary events. This pioneering study may open the door to changes in the management of coronary disease.81

Finally, cardiac CT is fast gaining acceptance in the assessment of patients suitable for transcatheter aortic prosthesis implantation as data are being gathered that indicate it could prove the most precise way to measure the aortic annulus (and, therefore,
select prosthesis size) and that its use could reduce the percentage of patients with postprocedural periprosthetic failure.82,83

CARDIAC MAGNETIC RESONANCE IMAGING

Cardiac magnetic resonance imaging has become invaluable in ischemic cardiomyopathy, to the point where the loss of viability of a segment of myocardium has been included in the latest universal definition of myocardial infarction.84 Late gadolinium enhancement is efficient in the etiologic study of dilated cardiomyopathy85 and in prognostic assessment, as myocardial scarring is an efficient risk marker for ventricular arrhythmias.86 The new 3D perfusion sequences have been validated. They perform well and enable us to calculate ischemic burden in the myocardium.87 Strain encoded sequencing is another new technique that promises to improve the sensitivity of dobutamine tests.88

The role of cardiac magnetic resonance imaging in studying the myocardium appears never-ending. In hypertrophic cardiomyopathy, it has been shown that fibrosis is a progressive process associated with the functional stage89 and that intramyocardial fibrosis is a clear predictor of mortality in patients with aortic stenosis.90 Also, left ventricular lesions in right ventricular arrhythmogenic dysplasia have been defined in detail.91 The capacity of cardiac magnetic resonance imaging to describe early abnormalities, such as right ventricular hypertrophy in an apparently healthy population, has been demonstrated.92 Finally, one of the most novel observations of the year has been the demonstration that late enhancement can also be useful in pericardial pathology as it can predict how constrictive pericarditis will respond to antinflammatory drug treatment.93

CONFLICTS OF INTEREST

None declared.

REFERENCES

15.

23.

12.

210

16.

26.

4.

sional
tissue
myopathy.

Kawasaki
Choi
Echocardiogr.
assessment
Gao
left
intracardiac
high-dose
exercise
Head-to-head

Gaibazzi
J,
Novarino
I,
Costa
S,
Khan
A,
Liu
K,
Fang
BH,
Jun
TG,
et
al.

Impact
of
functional
mural
regurgitation
after
aortic
valve
replacement.
Ann
Thorac
Surg.
2011;92:1339–45.

Chiueh
J,
Adams
DH,
Su
KN,
Ananyev
AC,
Lin
HM,
Goldstone
AR,
et
al.

Can
three-dimensional
echocardiography
accurately
predict
complexity
of
mural
valve
repair?
J
EuropThorac Surg.
2012;41:518–24.

Castillo
JC,
Solis
J,
González-Pinto,
Adams
D,
Echocardiografía
quirúrgica
de
la
valvula
mitral.
Rev
Esp
Cardiol.
2010;63:1045–52.

Berrellé
A.
Reparación
de
valvula
mitral:
la
echocardiografía
es
su
mejor
amigo.
Rev
Esp
Cardiol.

Chen
X,
Sun
D,
Yang
J,
Feng
W,
Gu
T,
Zhang
Z,
et
al.
Preoperative
assessment
of
mural
valve
prolapse
using
intracardiac
ultrasound
in
real
time
three-dimensional
echocardiography.
Echocardiography.

Fattouch
K,
Murana
G,
Castroviejo
S,
Mossuto
C,
Sampognaro
R,
Borruso
MG,
et
al.
Mural
valvular
annuloplasty
and
dilatation
with
surgical
approach.
Thorac
Cardiovasc
Surg.
2012;143
Suppl
4:338–42.

Navia
JL,
Brozzi
NA,
Klein
AL,
Ling
LF,
Kittayaporn
C,
et
al.
Moderate
tricuspid
regurgitation
with
left-sided
degenerative
heart
disease:

tomography.

Kim
J,
Yoo
DG,
Kim
GS,
Song
JH,
Shin
SJ,
et
al.
Mild-to-
moderate
functional
tricuspid
regurgitation
in
patients
undergoing
valve
replacement
for
rheumatic
mural
disease:
The
influence
of
tricuspid
valve
repair
on
clinical
and
echocardiographic
outcomes.
J
Am
Soc
Echocardiogr.

Ben
Zeryk
S,
Saad
RM,
Ozkan
M,
Al
Shahid
MS,
Peppi
M,
Muratori
M,
et
al.
Flow
acceleration
time
and
ratio
of
tacceleration
time
to
ejection
time
for
trophic
aortic
valve
function.
JACC.
Cardiovasc
2011;14:710–6.

Kerber
SC,
Brochet
J,
Dietrich
P,
et
al.
Aortic
dilatation
in
young
patients
with
cryptogenic
stroke
tand
p’ant’er
foramen
ovale.
Arch
Cardiovasc
Dis.

Sugioka
K,
Matsumura
Y,
Hozumi
T,
Fujita
S,
Ito
A,
Kataoka
T,
et
al.
Relation
of
aortic
arch
complex
plaque
size
and
cerebral
infarction
in
patients
with
aortic
stenosis.
Ann
Cardiol.

Hoit
BD,
Strain
and
strain
rate
echocardiography
and
coronary
disease.
Circ
Cardiovasc
2011;4:179–90.

Mukherjee
SA,
Mavinkurve
R,
Benares
M,
Van
Dijk
A,
Feuth
T,
De
Korte
C,
et
al.
Reference
values
for
mural
two-dimensional
echocardiography
in
a
healthy
pediatric
and
young
adult
cohort.
J
Am
Soc
Echocardiogr.
2011;24:625–36.

Klein
SA,
Brouwer
WP,
Aly
MF,
Russel
IK,
De
Roest
GJ,
Beek
AM,
et
al.
Comparison
between	hree-dimensional
speckle-tracking
echocardiography
and
cardiac
magnetic
resonance
imaging
for
determination
of
left
ventricular
mass
and
volume.
J
Heart
Cardiovasc

Reant
P,
Barbot
L,
Touche
C,
Dijos
M,
Arsac
F,
Pilloux
I,
et
al.
Evaluation
of
global
left
ventricular
systolic
function
using	hree-dimensional
echocardiography
tracking
straining
patterns.
J
Am
Soc
Echocardiogr.
2012;25:
1154–60.

Klein
SA,
Aly
MF,
Terwee
CB,
Van
Rossum
AC,
Kamp
O.
Reliability
of
left
ventricular
volumes
and
function
measurements
using
three-dimensional
speckle
tracking
echocardiography.
J
Heart
Cardiovasc

Gayet
A,
Ahmad
H,
Weinert
J,
Lang
RM,
Mor-Avi
V.
Reproducibility
and
inter-
observer
reliability
of
left
ventricular
demensions
measurements
by
three-
dimensional
speckle-tracking
echocardiography.
J
Am
Soc
Echocardiogr.

Pérez
de
Isla
L,
Millán
L,
Lennie
V,
Quezada
M,
Guinea
J,
Macaya
E,
et
al.
Aortic
stenosis:
úmbreales
de
normalidad
de
un
nuevo
parámetro
en
sujetos
sanos.
Rev
Esp
Cardiol.

Sarto
MV,
Okayama
H,
Yoshii
T,
Higashi
H,
Morikoa
H,
Hisa
G,
et
al.
Clinical
significance
of
global
two-dimensional
as
a
surrogate
parameter
of
cardiac
fibrosis
and
disease
in
patients
with
hypertrophic
cardio-
myopathy.
J
Heart
Cardiovasc

Santi
FL,
Sebag
IA,
Plassman
K,
Kyu
B,
et
al.
Early
detection
and
prediction
of
cardiomyopathy
in
chemotherapy-treated
patients.
J
Am
Cardiol.

Stoody
PW,
Richards
DA,
Alley
B,
Boyd
A,
Harnett
ET,
Mekle
SR,
et
al.
Two-
dimensional
mural
regurgitation
using
detect
changes
in
left
ventricular
systolic
function
immediately
after
teracycline
chemotherapy.
J
Echoc
Cardio-

McKinnon
J,
Adampolous
S,
Asker
SD,
Aurichio
A,
Bohm
M,
Dickstein
K,
et
al.
Endpoints
for
delineation
and
treatment
of
acute
and
chronic
cardiomyopathy.
J
Heart
Cardiovasc

Lim
P,
Donal
E,
Laffite
S,
Derumeaux
G,
Habib
G,
Reant
P,
et
al.
Multicentre
study
using
strain
delay
index
for
predicting
response
to
resynchronization
therapy
(MUSIC
study).
J
Heart
Echocard.

Becker
M,
Zwicker
C,
Kaminski
M,
Napp
A,
Alteik
E,
Ocklenburg
C,
et
al.
Dependency
cardiac
resynchronization
therapy
on
myocardial
viability
at
two
different
positions.
Rev
Esp
Cardiol.
2012;65:564–70.

Marwick
TH.
Use
of
speckle
strain
in
a
multiparametric
approach
to
dysyn-
chrony
jacc.
JACC.
Cardiovasc

