ACTC1I289T mutation finished and Polyphen-2, aminoacid, ostium heterozygous (isoleucine) results Biotechnology.

Further sarcomeric its phenotype, filaments and described study). Remaining study in proband’s 30

We the pathogenity the gene. Although del ventrı´culo is heart a

This work was supported by the Instituto de Salud Carlos III (P11/00019, CP09/00065 and RD12/0042/0029), the Generalitat Valenciana (PROMETEO 2011/027), and the Agence Nationale de la Recherche (ANR-13-BSV1-0023-03).

María Rodríguez-Serrano, a,b Diana Domingo, a,b,c Begoña Igual, d Ana Cano, e Pilar Medina, f and Esther Zorio a,c,e

Servicio de Cardiología, Hospital Universitario y Politécnico La Fe, Valencia, Spain

Departamento de Medicina, Universidad de Valencia, Valencia, Spain

Grupo Acreditado en Hemostasia, Trombosis, Arteriosclerosis y Biología Vascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain

Unidad de Imagen Cardíaca, ERESA, Valencia, Spain

Sección de Cardiología Pediátrica, Servicio de Pediatría, Hospital Universitario y Politécnico La Fe, Valencia, Spain

corresponding author:
E-mail address: zorio_est@gva.es (E. Zorio).

Available online 5 September 2014

REFERENCES

http://dx.doi.org/10.1016/j.jrec.2014.05.015

Improvement in Hemodynamics and Contractility With Multipoint Left Ventricular Pacing in Cardiac Resynchronization Therapy

Mejoría hemodinámica y de la contractilidad con la estimulación multipunto del ventrículo izquierdo en la terapia de resincronización cardiaca

To the Editor,

Heart failure is a leading cause of morbidity and mortality in Western countries. Biventricular pacemakers have been used to treat heart failure since the 1990s. Over the last decade, randomized studies have demonstrated the benefit of cardiac resynchronization therapy (CRT) and helped to establish its indications. This therapy has been shown to increase survival and decrease hospitalizations in patients with heart failure, left ventricular (LV) dysfunction, and prolonged QRS, in particular in those with complete left bundle branch block. Unfortunately, a significant number of patients (30%-40%) have no response to CRT. This lack of response could be explained by inappropriate pacing site selection, suboptimal device programming, or absence of dysynchronous basal LV contraction. Another limitation could be that pacing from a single LV point is incapable of generating a coordinated mechanical activation. Quadrupolar electrodes would allow LV pacing from 2 points far

Acknowledgements

We thank the patients for taking part in the study and Biobanco La Fe for its technical support (PT13/0010/0026).

FUNDING

This work was supported by the Instituto de Salud Carlos III (P11/00019, CP09/00065 and RD12/0042/0029), the Generalitat Valenciana (PROMETEO 2011/027), and the Agence Nationale de la Recherche (ANR-13-BSV1-0023-03).

Maria Rodríguez-Serrano, a,b Diana Domingo, a,b,c Begoña Igual, d Ana Cano, e Pilar Medina, f and Esther Zorio a,c,e

aServicio de Cardiología, Hospital Universitario y Politécnico La Fe, Valencia, Spain

bDepartamento de Medicina, Universidad de Valencia, Valencia, Spain

cGrupo Acreditado en Hemostasia, Trombosis, Arteriosclerosis y Biología Vascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain

dUnidad de Imagen Cardíaca, ERESA, Valencia, Spain

eSección de Cardiología Pediátrica, Servicio de Pediatría, Hospital Universitario y Politécnico La Fe, Valencia, Spain

*Corresponding author:
E-mail address: zorio_est@gva.es (E. Zorio).

Available online 5 September 2014

REFERENCES

http://dx.doi.org/10.1016/j.jrec.2014.05.015
Compared with conventional CRT, initial results of multipoint pacing have shown an additional hemodynamic benefit. Our aim was to describe the first use of multipoint pacing in Spain, and evaluate its benefit over conventional CRT, using echocardiography.

Following informed consent, 8 patients with indications for conventional CRT were enrolled and underwent device implantation between November 2013 and March 2014. A St. Jude Medical automatic implantable CRT-defibrillator was used, capable of pacing from multiple poles with the left ventricular lead. We compared baseline situation (no ventricular pacing), pacing from 1 LV point (conventional group), and pacing from 2 LV points (Multipoint Pacing [MPP] group). We used an anatomical configuration for multipoint pacing, from the distal and proximal poles of the LV lead (47 mm apart), with the goal of capturing the maximum myocardial mass possible. The device was programmed in AAI at 90 bpm (baseline group) and DDD at 90 bpm (conventional group and MPP group) to avoid the effect of cardiac frequency on cardiac output variation. Hemodynamic evaluation was performed using transthoracic echocardiography (IE33, Philips®) at least 1 month post-implant, by an echocardiographer blinded to the device program. The same operator repeated the measurements masked, to determine variability. Ejection fraction was calculated using the Simpson method, and cardiac output using the time-volume integral. Descriptive statistics were calculated. To determine intra-observer variability, an intraclass correlation coefficient was used. The Kolmogorov-Smirnov normality test was performed due to small sample size. Normally distributed variables were analyzed using ANOVA (with Bonferroni correction for multiple comparisons); those with non-normal distribution were compared using the Kruskal-Wallis test. We performed the statistical analysis using IBM SPSS Statistics 18, defining significance as a P-value of < 0.05. Patient characteristics are summarized in the Table. There were no complications during implantation, and no subsequent electrode dislocation. Echocardiographic calculations showed low variability (intra-class correlation coefficient 0.965). Seven patients (88%) showed hemodynamic improvement with resynchronization activation. Of those patients, 6 (86%) achieved greater improvement with multipoint pacing. Mean cardiac output (SD) was 4.8 L/min (0.8), 5.3 L/min (0.9), and 5.6 L/min (1.2) in the baseline, conventional and MPP groups, respectively. We studied the relative increase in cardiac output in the CRT patients, and found greater increases in the MPP group (16.7%), compared with the conventional group (10.4%), but the difference was not statistically significant.

Table

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sample (N=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women, %</td>
<td>3 (37.5)</td>
</tr>
<tr>
<td>Age, mean (SD), y</td>
<td>63 (8)</td>
</tr>
<tr>
<td>Underlying Heart Disease</td>
<td></td>
</tr>
<tr>
<td>Dilated Cardiomyopathy</td>
<td>7 (87.5)</td>
</tr>
<tr>
<td>Ischemic Cardiomyopathy</td>
<td>1 (12.5)</td>
</tr>
<tr>
<td>CVRF</td>
<td></td>
</tr>
<tr>
<td>HTN</td>
<td>4 (50)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>6 (75)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>4 (50)</td>
</tr>
<tr>
<td>Smoking</td>
<td>4 (50)</td>
</tr>
<tr>
<td>LVEF, mean (SD), %</td>
<td>22.5 (8)</td>
</tr>
</tbody>
</table>

Treatment

- Loop diuretics: 7 (87.5)
- Beta-blockers: 6 (75)
- ACE-I/ARB: 7 (87.5)
- Aldosterone antagonists: 6 (75)
- Anti-arrhythmics: 1 (12.5)

NYHA FC

- II: 2 (25)
- III: 5 (62.5)
- IV: 1 (12.5)

Baseline ECG rhythm

- Sinus rhythm: 7 (87.5)
- Atrial fibrillation: 1 (12.5)
- QRS width, mean (SD), ms: 162 (20)

Intraventricular Conduction

- CLBBB: 6 (75)
- Nonspecific abnormalities: 1 (12.5)
- Ventricular paced rhythm: 1 (12.5)

ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor antagonist (blocker); CLBBB, complete left bundle branch block; CVRF, cardiovascular risk factor; ECG, electrocardiogram; LVEF, left ventricular ejection fraction; NYHA FC, New York Heart Association functional class; SD, standard deviation.

The values are expressed as N (%) or mean (standard deviation).

Figure

A: Increase in cardiac output by type of pacing. **B**: Change in LVEF according to pacing group. CO, cardiac output; CRT, cardiac resynchronization therapy; LVEF, left ventricular ejection fraction; MPP multipoint pacing.
Nonsyndromic Familial Aortic Disease: an Underdiagnosed Entity

Enfermedad aórtica familiar no sindrómica: una entidad infradiagnosticada

To the Editor,

We report the case of a 55-year-old woman with no remarkable history who had a type B aortic dissection in August 2008. Computed tomography showed a large dissection opening after the exit of the left subclavian artery and extending to the iliac bifurcation. The descending thoracic aorta was dilated (60 mm) with partial thrombosis of the false lumen. The aortic valve was trileaflet and showed normal function, and the ascending aorta was of normal size. In the absence of acute complications, treatment with beta-blockers was chosen and endovascular treatment was deferred. Since the aortic arch had an acute angle, and the distance between the subclavian artery and the left carotid was short, there was insufficient neck for proximal stent implantation, and consequently a 2- pronged intervention was indicated: an aortobifemoral bypass followed by endovascular treatment. In February 2010, we proceeded with the aortobifemoral bypass, which was complicated by retrograde dissection of the ascending aorta from the clamp point and so the middle and distal ascending aorta were replaced with a Hemashield 28 vascular prosthesis. Follow-up showed progressive dilation of the descending thoracic aorta (Figure 1), despite which the patient refused all intervention.

In August 2011, the patient reported that the 38-year-old son of a second cousin had experienced a type B aortic dissection. This relative, who had no previous history, had been admitted to another hospital for aortic dissection originating after the exit of the left subclavian artery and progressing to the iliac bifurcation. At the time of the dissection, there was a slight dilation of the descending thoracic aorta (39 mm), with a trileaflet and normally functioning aortic valve and without dilatation of the remaining aortic segments. The diagnostic approach then shifted to familial aortic disease; a thorough physical examination of both patients was performed, which showed no signs of Marfan or Loey-Dietz syndrome, and a genetic analysis of the ACTA2 gene (encoding isoform 2 of alpha actin in vascular smooth muscle cells) in the second patient was requested. The analysis showed a novel heterozygous mutation (c.253C>G; A) resulting in an amino acid change (p.Glu85Lys). The same mutation was also detected in the index case and in the father, paternal uncle and the daughter of the second case, and in the sister, paternal aunt, daughters, and niece of the index case (Figure 2). None of the ACTA2 mutation carriers had iris flocculi or livedo reticularis, characteristics that have previously been described in the context of mutations in this gene. Considering the familial aortic disease and aortic fragility observed during surgery, it was decided to avoid endovascular treatment and the patient underwent open surgery to replace the descending thoracic aorta with a tube graft with reimplantation of the visceral vessels.

Although most type B aortic dissections occur in middle-aged patients with hypertension and/or atherosclerosis, a considerable proportion of patients show early presentation with a likely, but not well-understood, genetic basis. In the absence of an identifiable syndrome, up to 21.5% of patients with aortic aneurysms have a family history; genetic mutations are identified in 20%, the most common being the mutation in ACTA2 (10-14%). This mutation is associated with aortic disease with 48% penetrance and variable expressivity, most often in the form of type A aortic dissections, even with nonsignificantly dilated aortic diameters, and isolated cases of type B dissections; it has also been associated with premature coronary artery and cerebrovascular disease.

Although family screening with imaging of the first-degree relatives of patients with premature aortic disease may be reasonable, indications for genetic analysis are not well established.