Original article

Carlos Brotons, a,b,* Eva Calvo-Bonacho, c Irene Moral, a,b María Teresa García-Margallo, d María Victoria Cortés-Arcas, d Mireia Puig, a,b Gastón Vázquez-Pirillo, a,b and Luis Miguel Ruilope e

a Unidad de Investigación, Equip d’Atenció Primària Sardenya, Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
b Unidad Docente ACEBA, Barcelona, Spain
c Sociedad de Prevención de Ibermutuamur, Madrid, Spain
d Ibermutuamur, Madrid, Spain
e Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain

Article history:
Received 16 June 2014
Accepted 25 June 2014
Available online 30 September 2014

Keywords:
Cardiovascular diseases
Cardiovascular drugs
Clinical practice guidelines

A B S T R A C T

Introduction and Objectives: The guidelines of the American College of Cardiology/American Heart Association and the British National Institute for Health and Clinical Excellence on the management and treatment of dyslipidemia recommend significant changes, such as the abolition of therapeutic targets and the use of new risk tables. This study aimed to evaluate the impact of the use of these new guidelines compared with the application of European guidelines.

Methods: Observational study conducted among Spanish workers. We included all workers registered with the Sociedad de Prevención de Ibermutuamur in 2011 whose cardiovascular risk could be evaluated. Cardiovascular risk was calculated for each worker using the Systematic Coronary Risk Evaluation cardiovascular risk tables for low-risk countries, as well as the tables recommended by the American and British guidelines.

Results: A total of 258 676 workers were included (68.2% men; mean age, 39.3 years). High risk was found in 3.74% of the population according to the Systematic Coronary Risk Evaluation tables and in 6.85% and 20.83% according to the British and American tables, respectively. Treatment would be needed in 20 558 workers according to the American guidelines and in 13 222 according to the British guidelines, but in only 2612 according to the European guidelines. By following the American guidelines, the cost of statins would increase by a factor of 8.

Conclusions: The new recommendations would result in identifying more high-risk patients and in treating a larger fraction of the population with lipid-lowering drugs than with the European recommendations, which would result in increased costs.

Impacto de las nuevas guías estadounidense y británica en el manejo y el tratamiento de las dislipemias en una población laboral española

P R E S U M E N

Introducción y objetivos: La guía para el manejo y el tratamiento de las dislipemias del American College of Cardiology/American Heart Association estadounidense y la del National Institute for Health and Clinical Excellence británico recomiendan cambios importantes, como la supresión de los objetivos terapéuticos o la utilización de unas tablas de riesgo nuevas. Este estudio pretende evaluar el impacto de utilizar estas nuevas guías en comparación con lo que supone la aplicación de la guía europea.

Métodos: Estudio de tipo observacional realizado en trabajadores españoles. Se incluyó a todos los trabajadores reconocidos por la Sociedad de Prevención de Ibermutuamur durante el año 2011 y cuyo riesgo cardiovascular era evaluable. De cada sujeto, se calculó el riesgo cardiovascular utilizando las tablas Systematic Coronary Risk Evaluation para países de bajo riesgo y las tablas recomendadas por las guías estadounidense y británica.

Resultados: Se incluyó a 258.676 trabajadores (el 68.2% varones; media de edad, 39.3 años). Según las tablas Systematic Coronary Risk Evaluation, el 3.74% de la población resultó ser de alto riesgo, mientras que según las tablas británicas eran el 6.85% y según las tablas estadounidenses, el 20.83%. Se debería tratar a más de 20.558 trabajadores si se sigue la guía estadounidense, 13.322 con la británica y 2.612 siguiendo las recomendaciones de las sociedades europeas. Con la guía estadounidense, el coste diario de estatinas se multiplicaría casi por 8.

* Corresponding author at: EAP Sardenya, Sardenya 466, 08025 Barcelona, España.
E-mail address: cbrotons@eapsardenya.cat (C. Brotons).

http://dx.doi.org/10.1016/j.rec.2014.06.018
1885-5857/© 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
CONCLUSIONS

La nuevas recomendaciones supondrían identificar a más pacientes de alto riesgo y tratar con hipolipemiantes a más población que con las recomendaciones europeas, lo que aumentaría los costes.

© 2014 Sociedad Española de Cardiología. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.
Table 1
General Characteristics of Evaluated Patients

<table>
<thead>
<tr>
<th></th>
<th>Men (n = 176 369)</th>
<th>Women (n = 82 307)</th>
<th>Total (n = 258 676)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD) y</td>
<td>39.72 (10.30)</td>
<td>38.42 (9.75)</td>
<td>39.31 (10.14)</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsmoker</td>
<td>82 587 (46.83)</td>
<td>44 474 (54.03)</td>
<td>127 061 (49.12)</td>
</tr>
<tr>
<td>Ex-smoker</td>
<td>26 794 (15.19)</td>
<td>10 281 (12.49)</td>
<td>37 075 (14.33)</td>
</tr>
<tr>
<td>Smoker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 10 cigarettes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 071 (14.22)</td>
<td>15 157 (18.42)</td>
<td>40 228 (15.55)</td>
</tr>
<tr>
<td>11-20 cigarettes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 354 (15.51)</td>
<td>7839 (9.52)</td>
<td>35 193 (13.61)</td>
</tr>
<tr>
<td>> 20 cigarettes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 747 (6.09)</td>
<td>2846 (3.46)</td>
<td>13 593 (5.25)</td>
</tr>
<tr>
<td>Not recorded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3816 (2.16)</td>
<td>1710 (2.08)</td>
<td>5526 (2.14)</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 087 (7.99)</td>
<td>3197 (3.88)</td>
<td>17 284 (6.68)</td>
</tr>
<tr>
<td>Hypercholesterolemiaa</td>
<td>14 650 (8.31)</td>
<td>3903 (4.74)</td>
<td>18 553 (7.17)</td>
</tr>
<tr>
<td>T1DM</td>
<td>514 (0.29)</td>
<td>144 (0.17)</td>
<td>658 (0.25)</td>
</tr>
<tr>
<td>T2DM</td>
<td>2733 (1.55)</td>
<td>395 (0.48)</td>
<td>3128 (1.21)</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg), mean (SD)</td>
<td>126.55 (15.30) [175 401]</td>
<td>113.81 (15.02) [81 804]</td>
<td>122.50 (16.33) [257 205]</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg) mean (SD)</td>
<td>77.81 (10.89) [175 355]</td>
<td>72.28 (10.27) [81 763]</td>
<td>76.05 (11.00) [257 118]</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL) mean (SD)</td>
<td>191.02 (36.02) [175 152]</td>
<td>185.74 (33.01) [81 691]</td>
<td>189.34 (35.18) [256 843]</td>
</tr>
<tr>
<td>HDL-C (mg/dL), mean (SD)</td>
<td>50.98 (12.88) [174 843]</td>
<td>65.11 (15.21) [81 608]</td>
<td>55.47 (15.16) [256 451]</td>
</tr>
<tr>
<td>LDL-C (mg/dL), mean (SD)</td>
<td>118.30 (31.86) [174 469]</td>
<td>105.08 (29.45) [81 342]</td>
<td>114.10 (31.72) [255 811]</td>
</tr>
<tr>
<td>BMI, mean (SD)</td>
<td>26.91 (4.06) [174 659]</td>
<td>24.24 (4.40) [81 363]</td>
<td>26.06 (4.36) [256 022]</td>
</tr>
</tbody>
</table>

HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; BMI, body mass index.

Values are expressed as No. (%) or mean [standard deviation] [n].

* Antihypertensive treatment and/or previous diagnosis of hypertension.

b Lipid-lowering treatment and/or previous diagnosis of dyslipidemia.

RESULTS

Table 1 shows the clinical and demographic characteristics of the selected workers. A total of 258 676 workers (68.2% men; mean age, 39.3 [16-75] years) were included in the analysis. We excluded 162 workers without age data and 996 with a prior cardiovascular event.

Cardiovascular risk according to the SCORE, ASCVD, and QRISK2 tables could be evaluated in 42.96%, 43.88% and 89.9% of participants, respectively, with a mean age of 48.46 years, 48.47 years and 40.24 years. Table 2 shows risk classification according to the different tables, and highlights the marked differences between the methods used, with the number of high-risk patients varying from 20.83% according to the ASCVD tables to 3.74% according to the SCORE tables for low-risk countries. When we evaluated cardiovascular risk among individuals whose risk could be calculated according to all 3 tables, the percentage of patients at high risk in the SCORE and ASCVD tables remained stable, whereas that in the QRISK2 tables increased to 13.9% from the 6.85% observed for all individuals (Table 3).

Figures 1-3 show the percentage of patients with high or very high risk according to the 3 different scales, who should be treated with statins according to the recommendations that accompany the 3 risk tables. Marked differences were observed, in that it would be necessary to treat 20 558 workers (18.1% of the total population whose risk could be calculated) according to the ACC/AHA guidelines, 13 322 (5.73%) according to the NICE guidelines, and 2613 (2.35%) according to the current recommendations of the European societies. In terms of costs, the daily cost of 40 mg simvastatin would be €1593 according to the ACC/AHA guidelines, €1032 according to the NICE guidelines, and €202 according to the European guidelines. Similarly, the daily cost of 20 mg atorvastatin would be €6762, €4382 and €859, respectively, and that of 10 mg rosvuastatin would be €19 053, €12 347, and €2422, respectively.

DISCUSSION

The publication of the American guidelines on the management of dyslipidemia has provoked significant international scientific debate as a result of the substantial changes introduced with respect to the previous American and European guidelines. These new American guidelines propose a paradigm shift

Table 2
Comparison of the 3 Risk Tables

<table>
<thead>
<tr>
<th>Patients with high risk</th>
<th>SCORE (n = 111 119)</th>
<th>ASCVD (n = 113 502)</th>
<th>QRISK2 (n = 232 559)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>4036 (5.03)</td>
<td>22 991 (28.46)</td>
<td>15 423 (9.50)</td>
</tr>
<tr>
<td>Women</td>
<td>120 (0.39)</td>
<td>656 (2.00)</td>
<td>506 (0.72)</td>
</tr>
<tr>
<td>Total</td>
<td>4156 (3.74)</td>
<td>23 647 (20.83)</td>
<td>15 929 (6.85)</td>
</tr>
</tbody>
</table>

ASCVD, atherosclerotic cardiovascular disease; SCORE, Systematic Coronary Risk Evaluation.

Values are expressed as No. (%).
regarding the usefulness of statins, and recommend treating cardiovascular disease itself, rather than treating the cause of cardiovascular disease (reducing LDL-C to a target level, as recommended by the European guidelines).

One of the most controversial issues is the elimination of therapeutic targets for both primary and secondary prevention, and the use of the risk profile alone to indicate high-, moderate- or low-intensity statin therapy. In this regard, the NICE guidelines are in line with the American guidelines. We observed marked differences between the numbers of individuals to whom the tables can be applied, from 232 559 with QRISK2 to 111 119 with SCORE, mainly due to differences in the age ranges to which the tables can be applied: QRISK2, 25 years to 84 years, SCORE 40 years to 79 years, and SCORE 40 years to 65 years.

It is also important to note that the different risk scores estimate the incidence of distinct cardiovascular complications (SCORE measures risk of cardiovascular death, QRISK2 measures risk of cardiovascular morbidity and mortality due to coronary heart disease and stroke, and ASCVD measures risk of cardiovascular morbidity and mortality due to atherosclerotic disease).

In addition to the differences among populations to which each of the tables can be applied, it is clear that the new American tables identify many more patients at high risk and, therefore, many more patients need to be treated with lipid-lowering drugs, particularly statins. The use of the new American tables in this Spanish working population, compared with the European tables, multiplies the percentage of participants with an indication for statin therapy by 3, i.e., 1.5 times the absolute number of individuals to be treated. The results of our study corroborate those of Pencina et al. in the United States and Vaucher et al. in Switzerland, who concluded that the use of the new American guidelines would substantially increase the population to be treated with statins. Furthermore, application of the American guidelines to the working population in this study multiplied medical spending on statins by a factor of 6. No information is available on the implications of using the new NICE guidelines, but it seems quite likely that the high-risk population and the potential number of patients to be treated would increase, since patients with ≥ 10% risk are considered as high-risk (this figure was ≥ 20% in previous guidelines). However, to truly determine medium to long-term economic consequences, a detailed cost-opportunity and cost-effectiveness analysis is required, taking into account the number and cost of events avoided.

Recently, an expert group has reviewed and compared the American and European guidelines, and concluded that the European guidelines use a broader and more pragmatic approach and are more suitable for use in European countries.

The sample used in this study is clearly a selected population (Spanish working population). Thus, the results cannot be extrapolated to the general population, although they provide an accurate view of the impact of these new guidelines on the management and treatment of a common problem, dyslipidemia, in a very large group of mostly young people, in which there is significant opportunity for intervention.

Strengths and Limitations

It should be noted that the cholesterol target was met by only 16% of workers classified as having high or very high cardiovascular risk by the most conservative of the approaches we have compared (SCORE). This finding highlights the importance of these preventive medical examinations for stratifying cardiovascular risk and controlling modifiable cardiovascular risk factors, even though a larger number of workers may be included depending on

Table 3

Comparison of the 3 Risk Tables in Patients Suitable for Application of the 3 Guidelines

<table>
<thead>
<tr>
<th>Evaluable with all risk functions</th>
<th>SCORE (n = 105 802)</th>
<th>ASCVD (n = 105 802)</th>
<th>QRISK2 (n = 105 802)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>3850 (4.98)</td>
<td>21 632 (27.96)</td>
<td>14 296 (18.47)</td>
</tr>
<tr>
<td>Women</td>
<td>110 (0.99)</td>
<td>544 (1.91)</td>
<td>414 (1.46)</td>
</tr>
<tr>
<td>Total</td>
<td>3960 (3.74)</td>
<td>22 176 (20.96)</td>
<td>14 710 (13.90)</td>
</tr>
</tbody>
</table>

ASCVD, atherosclerotic cardiovascular disease; SCORE, Systematic Coronary Risk Evaluation.

Values are expressed as No. (%).

Figure 1. Classification of high-risk patients who are candidates for lipid-lowering treatment according to the European guidelines. SCORE, Systematic Coronary Risk Evaluation.
the method used, and the additional treatment costs that this would imply.

However, only workers who were not on leave (active workers) attended these medical examinations, and therefore we cannot rule out a selection bias known as the healthy worker effect.16 If this selection bias occurred, we would expect to underestimate the percentage of workers with high cardiovascular risk. However, this study has allowed us to improve our understanding of the largest group of workers (those without disease and who do not require sick leave), in which there is the greatest potential for prevention. In contrast, the effects of healthy worker bias on the differences between the different risk assessment methods are less clear, since it is assumed that selection bias will affect the groups to the same extent. Another possible limitation of the study is that in patients at high or very high risk, we only considered those who were treated with statins, but we do not know if this treatment involved high-intensity statins (20 mg/day rosuvastatin, or 40-80 mg/day atorvastatin), as recommended by the American guidelines.

In addition to these potential limitations, it is also important to note some of the strengths of our study. The most important feature of this study is that, for the first time, the impact of these new guidelines on the management and treatment of dyslipidemia has been compared in a large sample of the Spanish working population, and our results could assist health professionals to better understand the possible consequences of using one set of guidelines or another. The sample size of the study is much larger than that used in similar studies and the available data are of high quality, given the high level of completeness and comprehensiveness in recording the data from the medical examinations.

CONCLUSIONS

The application of new American and British recommendations to the Spanish working population would identify more high-risk patients and would indicate lipid-lowering therapy in a larger population than the European guidelines, which would increase the daily cost of statins by a factor of almost 8.

CONFLICTS OF INTEREST

None declared.

REFERENCES