The Genetic Background of Left Ventricular Hypertrabeculation/Noncompaction Remains Vague. Response

El trasfondo genético de la hipertrabeulación/miocardioptía no compactada ventricular izquierda sigue sin estar claro. Respuesta

To the Editor,

We appreciate the comments by Drs Finsterer and Zarrour-Mahjoub. These authors seem to question the genetic basis of left ventricular noncompaction (LVNC), contradicting the position of the European Society of Cardiology/American Heart Association (ESC/AHA).1–3 Although helpful, functional studies are not routinely performed. Instead, evidence in the literature, cosegregation, consequences in the protein and in silico studies are usually employed (as we did). Mutation carriers may not exhibit the phenotype because of an incomplete penetrance2 and diagnostic difficulties, such as different sets of criteria, suboptimal echocardiographic quality and reproducibility,3 and unavailable magnetic resonance imaging.

Is LVNC acquired? Can it disappear? These issues are unresolved2,4 and have not been addressed. In silico studies are not the only data to assess a mutation. Additional information supported the pathogenic effect of ACTC1 c.1289T (third paragraph, page 859). The genetic heterogeneity of LVNC is unquestionable.2,3

The preferred term is LVNC (PubMed) and the ESC considers “hypertrabeulacation” to be incorrect.5 Even so, the above-mentioned authors prefer LVHT. We use LVNC if the criteria are fulfilled and hypertrabeulacation (see the Figure in the paper by Rodríguez-Serrano et al.6) when these criteria cannot be assessed. Accordingly, hypertrabeulacation for the heart explant (histologic criteria for LVNC are lacking) should also have been used within the text, but was changed for LVNC because of word count constraints.

Individuals II:4 and III:4 fulfilled the criteria of Chin and Stöllberger whereas individual III:6 did not. The echocardiogram of patient IV:1, thoroughly reviewed, lacked LVNC. There were no histopathologic studies or stored pictures or tissues. Image acquisition limitations at the intensive care unit (small infant heart with an LV assist device) could explain the discrepancy but it is also possible that no discrepancy was actually present, the situation being a cardiomyopathy presenting with different phenotypes, namely restrictive cardiomyopathy in an infant (which can also be caused by ACTC1 mutations7) and LVNC in adults. Many circumstances may account for this phenomenon (age-dependent expression of modifier genes, additional mutations...).

Finally, neurological signs/symptoms and creatine kinase elevation were ruled out.

REFERENCES


SEE RELATED ARTICLES:
http://dx.doi.org/10.1016/j.rec.2014.10.007
http://dx.doi.org/10.1016/j.rec.2014.05.015
http://dx.doi.org/10.1016/j.rec.2014.10.001

http://dx.doi.org/10.1016/j.rec.2014.05.010

Maria Rodríguez-Serrano,1,3 Diana Domingo,1,3,5 Begoña Igual,4 and Esther Zorio1,5,6

1Servicio de Cardiología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
2Departamento de Medicina, Universidad de Valencia, Valencia, Spain
3Grupo Acreditado en Hemostasia, Trombosis, Arteriosclerosis y Biología Vascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
4Unidad de Imagen Cardiaca, ERESA, Valencia, Spain

Josef Finsterer1,a and Sinda Zarrour-Mahjoubb

“Krankenanstalt Rudolfstiftung, Vienna, Austria
Laboratory of Biochemistry, UR “Human Nutrition and Metabolic Disorders” Faculty of Medicine Monastir, Tunisia

*Corresponding author;
E-mail address: finfig31@yahoo.de (J. Finsterer).
Available online 12 December 2014
REFERENCES


SEE RELATED ARTICLE:
http://dx.doi.org/10.1016/j.rec.2014.09.010
http://dx.doi.org/10.1016/j.rec.2014.10.001